Metamath Proof Explorer


Theorem tgbtwnouttr2

Description: Outer transitivity law for betweenness. Left-hand side of Theorem 3.7 of Schwabhauser p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnintr.1 ( 𝜑𝐴𝑃 )
tgbtwnintr.2 ( 𝜑𝐵𝑃 )
tgbtwnintr.3 ( 𝜑𝐶𝑃 )
tgbtwnintr.4 ( 𝜑𝐷𝑃 )
tgbtwnouttr2.1 ( 𝜑𝐵𝐶 )
tgbtwnouttr2.2 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
tgbtwnouttr2.3 ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) )
Assertion tgbtwnouttr2 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgbtwnintr.1 ( 𝜑𝐴𝑃 )
6 tgbtwnintr.2 ( 𝜑𝐵𝑃 )
7 tgbtwnintr.3 ( 𝜑𝐶𝑃 )
8 tgbtwnintr.4 ( 𝜑𝐷𝑃 )
9 tgbtwnouttr2.1 ( 𝜑𝐵𝐶 )
10 tgbtwnouttr2.2 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
11 tgbtwnouttr2.3 ( 𝜑𝐶 ∈ ( 𝐵 𝐼 𝐷 ) )
12 simprl ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) )
13 4 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐺 ∈ TarskiG )
14 7 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐶𝑃 )
15 8 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐷𝑃 )
16 6 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐵𝑃 )
17 simplr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝑥𝑃 )
18 9 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐵𝐶 )
19 5 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐴𝑃 )
20 10 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
21 1 2 3 13 19 16 14 17 20 12 tgbtwnexch3 ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝑥 ) )
22 11 ad2antrr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝐷 ) )
23 simprr ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) )
24 eqidd ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → ( 𝐶 𝐷 ) = ( 𝐶 𝐷 ) )
25 1 2 3 13 14 14 15 16 17 15 18 21 22 23 24 tgsegconeq ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝑥 = 𝐷 )
26 25 oveq2d ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → ( 𝐴 𝐼 𝑥 ) = ( 𝐴 𝐼 𝐷 ) )
27 12 26 eleqtrd ( ( ( 𝜑𝑥𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )
28 1 2 3 4 5 7 7 8 axtgsegcon ( 𝜑 → ∃ 𝑥𝑃 ( 𝐶 ∈ ( 𝐴 𝐼 𝑥 ) ∧ ( 𝐶 𝑥 ) = ( 𝐶 𝐷 ) ) )
29 27 28 r19.29a ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )