| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | ishlg.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | ishlg.k |  |-  K = ( hlG ` G ) | 
						
							| 4 |  | ishlg.a |  |-  ( ph -> A e. P ) | 
						
							| 5 |  | ishlg.b |  |-  ( ph -> B e. P ) | 
						
							| 6 |  | ishlg.c |  |-  ( ph -> C e. P ) | 
						
							| 7 |  | hlln.1 |  |-  ( ph -> G e. TarskiG ) | 
						
							| 8 |  | hltr.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | lnhl.l |  |-  L = ( LineG ` G ) | 
						
							| 10 |  | lnhl.1 |  |-  ( ph -> C e. ( A L B ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ C = B ) -> C = B ) | 
						
							| 12 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 13 | 1 12 2 7 4 6 | tgbtwntriv2 |  |-  ( ph -> C e. ( A I C ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ C = B ) -> C e. ( A I C ) ) | 
						
							| 15 | 11 14 | eqeltrrd |  |-  ( ( ph /\ C = B ) -> B e. ( A I C ) ) | 
						
							| 16 | 15 | olcd |  |-  ( ( ph /\ C = B ) -> ( C ( K ` B ) A \/ B e. ( A I C ) ) ) | 
						
							| 17 | 1 9 2 7 4 5 10 | tglngne |  |-  ( ph -> A =/= B ) | 
						
							| 18 | 1 9 2 7 4 5 17 6 | tgellng |  |-  ( ph -> ( C e. ( A L B ) <-> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) ) | 
						
							| 19 | 10 18 | mpbid |  |-  ( ph -> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) | 
						
							| 20 |  | df-3or |  |-  ( ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) <-> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) | 
						
							| 21 | 19 20 | sylib |  |-  ( ph -> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ C =/= B ) -> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) | 
						
							| 23 | 1 2 3 6 4 5 7 | ishlg |  |-  ( ph -> ( C ( K ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ph /\ C =/= B ) -> ( C ( K ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) | 
						
							| 25 |  | df-3an |  |-  ( ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) <-> ( ( C =/= B /\ A =/= B ) /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) | 
						
							| 26 | 24 25 | bitrdi |  |-  ( ( ph /\ C =/= B ) -> ( C ( K ` B ) A <-> ( ( C =/= B /\ A =/= B ) /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) | 
						
							| 27 | 17 | anim1ci |  |-  ( ( ph /\ C =/= B ) -> ( C =/= B /\ A =/= B ) ) | 
						
							| 28 | 27 | biantrurd |  |-  ( ( ph /\ C =/= B ) -> ( ( C e. ( B I A ) \/ A e. ( B I C ) ) <-> ( ( C =/= B /\ A =/= B ) /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) | 
						
							| 29 | 7 | adantr |  |-  ( ( ph /\ C =/= B ) -> G e. TarskiG ) | 
						
							| 30 | 5 | adantr |  |-  ( ( ph /\ C =/= B ) -> B e. P ) | 
						
							| 31 | 6 | adantr |  |-  ( ( ph /\ C =/= B ) -> C e. P ) | 
						
							| 32 | 4 | adantr |  |-  ( ( ph /\ C =/= B ) -> A e. P ) | 
						
							| 33 | 1 12 2 29 30 31 32 | tgbtwncomb |  |-  ( ( ph /\ C =/= B ) -> ( C e. ( B I A ) <-> C e. ( A I B ) ) ) | 
						
							| 34 | 1 12 2 29 30 32 31 | tgbtwncomb |  |-  ( ( ph /\ C =/= B ) -> ( A e. ( B I C ) <-> A e. ( C I B ) ) ) | 
						
							| 35 | 33 34 | orbi12d |  |-  ( ( ph /\ C =/= B ) -> ( ( C e. ( B I A ) \/ A e. ( B I C ) ) <-> ( C e. ( A I B ) \/ A e. ( C I B ) ) ) ) | 
						
							| 36 | 26 28 35 | 3bitr2d |  |-  ( ( ph /\ C =/= B ) -> ( C ( K ` B ) A <-> ( C e. ( A I B ) \/ A e. ( C I B ) ) ) ) | 
						
							| 37 | 36 | orbi1d |  |-  ( ( ph /\ C =/= B ) -> ( ( C ( K ` B ) A \/ B e. ( A I C ) ) <-> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) ) | 
						
							| 38 | 22 37 | mpbird |  |-  ( ( ph /\ C =/= B ) -> ( C ( K ` B ) A \/ B e. ( A I C ) ) ) | 
						
							| 39 | 16 38 | pm2.61dane |  |-  ( ph -> ( C ( K ` B ) A \/ B e. ( A I C ) ) ) |