Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|- P = ( Base ` G ) |
2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
8 |
|
hltr.d |
|- ( ph -> D e. P ) |
9 |
|
lnhl.l |
|- L = ( LineG ` G ) |
10 |
|
lnhl.1 |
|- ( ph -> C e. ( A L B ) ) |
11 |
|
simpr |
|- ( ( ph /\ C = B ) -> C = B ) |
12 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
13 |
1 12 2 7 4 6
|
tgbtwntriv2 |
|- ( ph -> C e. ( A I C ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ C = B ) -> C e. ( A I C ) ) |
15 |
11 14
|
eqeltrrd |
|- ( ( ph /\ C = B ) -> B e. ( A I C ) ) |
16 |
15
|
olcd |
|- ( ( ph /\ C = B ) -> ( C ( K ` B ) A \/ B e. ( A I C ) ) ) |
17 |
1 9 2 7 4 5 10
|
tglngne |
|- ( ph -> A =/= B ) |
18 |
1 9 2 7 4 5 17 6
|
tgellng |
|- ( ph -> ( C e. ( A L B ) <-> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) ) |
19 |
10 18
|
mpbid |
|- ( ph -> ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) ) |
20 |
|
df-3or |
|- ( ( C e. ( A I B ) \/ A e. ( C I B ) \/ B e. ( A I C ) ) <-> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) |
21 |
19 20
|
sylib |
|- ( ph -> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ C =/= B ) -> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) |
23 |
1 2 3 6 4 5 7
|
ishlg |
|- ( ph -> ( C ( K ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
24 |
23
|
adantr |
|- ( ( ph /\ C =/= B ) -> ( C ( K ` B ) A <-> ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
25 |
|
df-3an |
|- ( ( C =/= B /\ A =/= B /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) <-> ( ( C =/= B /\ A =/= B ) /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) |
26 |
24 25
|
bitrdi |
|- ( ( ph /\ C =/= B ) -> ( C ( K ` B ) A <-> ( ( C =/= B /\ A =/= B ) /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
27 |
17
|
anim1ci |
|- ( ( ph /\ C =/= B ) -> ( C =/= B /\ A =/= B ) ) |
28 |
27
|
biantrurd |
|- ( ( ph /\ C =/= B ) -> ( ( C e. ( B I A ) \/ A e. ( B I C ) ) <-> ( ( C =/= B /\ A =/= B ) /\ ( C e. ( B I A ) \/ A e. ( B I C ) ) ) ) ) |
29 |
7
|
adantr |
|- ( ( ph /\ C =/= B ) -> G e. TarskiG ) |
30 |
5
|
adantr |
|- ( ( ph /\ C =/= B ) -> B e. P ) |
31 |
6
|
adantr |
|- ( ( ph /\ C =/= B ) -> C e. P ) |
32 |
4
|
adantr |
|- ( ( ph /\ C =/= B ) -> A e. P ) |
33 |
1 12 2 29 30 31 32
|
tgbtwncomb |
|- ( ( ph /\ C =/= B ) -> ( C e. ( B I A ) <-> C e. ( A I B ) ) ) |
34 |
1 12 2 29 30 32 31
|
tgbtwncomb |
|- ( ( ph /\ C =/= B ) -> ( A e. ( B I C ) <-> A e. ( C I B ) ) ) |
35 |
33 34
|
orbi12d |
|- ( ( ph /\ C =/= B ) -> ( ( C e. ( B I A ) \/ A e. ( B I C ) ) <-> ( C e. ( A I B ) \/ A e. ( C I B ) ) ) ) |
36 |
26 28 35
|
3bitr2d |
|- ( ( ph /\ C =/= B ) -> ( C ( K ` B ) A <-> ( C e. ( A I B ) \/ A e. ( C I B ) ) ) ) |
37 |
36
|
orbi1d |
|- ( ( ph /\ C =/= B ) -> ( ( C ( K ` B ) A \/ B e. ( A I C ) ) <-> ( ( C e. ( A I B ) \/ A e. ( C I B ) ) \/ B e. ( A I C ) ) ) ) |
38 |
22 37
|
mpbird |
|- ( ( ph /\ C =/= B ) -> ( C ( K ` B ) A \/ B e. ( A I C ) ) ) |
39 |
16 38
|
pm2.61dane |
|- ( ph -> ( C ( K ` B ) A \/ B e. ( A I C ) ) ) |