Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ishlg.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
3 |
|
ishlg.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
4 |
|
ishlg.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
5 |
|
ishlg.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
6 |
|
ishlg.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
7 |
|
hlln.1 |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
8 |
|
hltr.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
9 |
|
lnhl.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
10 |
|
lnhl.1 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐵 ) → 𝐶 = 𝐵 ) |
12 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
13 |
1 12 2 7 4 6
|
tgbtwntriv2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐶 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐵 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐶 ) ) |
15 |
11 14
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐵 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
16 |
15
|
olcd |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐵 ) → ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
17 |
1 9 2 7 4 5 10
|
tglngne |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
18 |
1 9 2 7 4 5 17 6
|
tgellng |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ↔ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) ) |
19 |
10 18
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
20 |
|
df-3or |
⊢ ( ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ↔ ( ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
21 |
19 20
|
sylib |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
23 |
1 2 3 6 4 5 7
|
ishlg |
⊢ ( 𝜑 → ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ↔ ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) ) |
25 |
|
df-3an |
⊢ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ↔ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) |
26 |
24 25
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ↔ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) ) |
27 |
17
|
anim1ci |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
28 |
27
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ↔ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ) ) ) |
29 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
30 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
31 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → 𝐶 ∈ 𝑃 ) |
32 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
33 |
1 12 2 29 30 31 32
|
tgbtwncomb |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ↔ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
34 |
1 12 2 29 30 32 31
|
tgbtwncomb |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ↔ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) |
35 |
33 34
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( ( 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ∨ 𝐴 ∈ ( 𝐵 𝐼 𝐶 ) ) ↔ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) ) |
36 |
26 28 35
|
3bitr2d |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ↔ ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ) ) |
37 |
36
|
orbi1d |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ↔ ( ( 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ∨ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) ) |
38 |
22 37
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐶 ≠ 𝐵 ) → ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
39 |
16 38
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴 ∨ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |