| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishlg.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ishlg.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | ishlg.k | ⊢ 𝐾  =  ( hlG ‘ 𝐺 ) | 
						
							| 4 |  | ishlg.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | ishlg.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | ishlg.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | hlln.1 | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 8 |  | hltr.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 9 |  | lnhl.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 10 |  | lnhl.1 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐿 𝐵 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐵 )  →  𝐶  =  𝐵 ) | 
						
							| 12 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 13 | 1 12 2 7 4 6 | tgbtwntriv2 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐵 )  →  𝐶  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 15 | 11 14 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐵 )  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 16 | 15 | olcd | ⊢ ( ( 𝜑  ∧  𝐶  =  𝐵 )  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 17 | 1 9 2 7 4 5 10 | tglngne | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 18 | 1 9 2 7 4 5 17 6 | tgellng | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐿 𝐵 )  ↔  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) ) | 
						
							| 19 | 10 18 | mpbid | ⊢ ( 𝜑  →  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 20 |  | df-3or | ⊢ ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  ↔  ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 21 | 19 20 | sylib | ⊢ ( 𝜑  →  ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 23 | 1 2 3 6 4 5 7 | ishlg | ⊢ ( 𝜑  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ↔  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ↔  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) ) | 
						
							| 25 |  | df-3an | ⊢ ( ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) )  ↔  ( ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) | 
						
							| 26 | 24 25 | bitrdi | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ↔  ( ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) ) | 
						
							| 27 | 17 | anim1ci | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵 ) ) | 
						
							| 28 | 27 | biantrurd | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) )  ↔  ( ( 𝐶  ≠  𝐵  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) ) ) ) ) | 
						
							| 29 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  𝐺  ∈  TarskiG ) | 
						
							| 30 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  𝐵  ∈  𝑃 ) | 
						
							| 31 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  𝐶  ∈  𝑃 ) | 
						
							| 32 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  𝐴  ∈  𝑃 ) | 
						
							| 33 | 1 12 2 29 30 31 32 | tgbtwncomb | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ↔  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 34 | 1 12 2 29 30 32 31 | tgbtwncomb | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( 𝐴  ∈  ( 𝐵 𝐼 𝐶 )  ↔  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) | 
						
							| 35 | 33 34 | orbi12d | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( ( 𝐶  ∈  ( 𝐵 𝐼 𝐴 )  ∨  𝐴  ∈  ( 𝐵 𝐼 𝐶 ) )  ↔  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) | 
						
							| 36 | 26 28 35 | 3bitr2d | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ↔  ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) ) ) ) | 
						
							| 37 | 36 | orbi1d | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  ↔  ( ( 𝐶  ∈  ( 𝐴 𝐼 𝐵 )  ∨  𝐴  ∈  ( 𝐶 𝐼 𝐵 ) )  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) ) | 
						
							| 38 | 22 37 | mpbird | ⊢ ( ( 𝜑  ∧  𝐶  ≠  𝐵 )  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) | 
						
							| 39 | 16 38 | pm2.61dane | ⊢ ( 𝜑  →  ( 𝐶 ( 𝐾 ‘ 𝐵 ) 𝐴  ∨  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) ) |