| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 3 |
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 6 |
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 7 |
|
tglngne.1 |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ) |
| 8 |
|
df-ov |
⊢ ( 𝑋 𝐿 𝑌 ) = ( 𝐿 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 9 |
7 8
|
eleqtrdi |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐿 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 10 |
|
elfvdm |
⊢ ( 𝑍 ∈ ( 𝐿 ‘ 〈 𝑋 , 𝑌 〉 ) → 〈 𝑋 , 𝑌 〉 ∈ dom 𝐿 ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ dom 𝐿 ) |
| 12 |
1 2 3
|
tglnfn |
⊢ ( 𝐺 ∈ TarskiG → 𝐿 Fn ( ( 𝑃 × 𝑃 ) ∖ I ) ) |
| 13 |
|
fndm |
⊢ ( 𝐿 Fn ( ( 𝑃 × 𝑃 ) ∖ I ) → dom 𝐿 = ( ( 𝑃 × 𝑃 ) ∖ I ) ) |
| 14 |
4 12 13
|
3syl |
⊢ ( 𝜑 → dom 𝐿 = ( ( 𝑃 × 𝑃 ) ∖ I ) ) |
| 15 |
11 14
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( ( 𝑃 × 𝑃 ) ∖ I ) ) |
| 16 |
15
|
eldifbd |
⊢ ( 𝜑 → ¬ 〈 𝑋 , 𝑌 〉 ∈ I ) |
| 17 |
|
df-br |
⊢ ( 𝑋 I 𝑌 ↔ 〈 𝑋 , 𝑌 〉 ∈ I ) |
| 18 |
|
ideqg |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑋 I 𝑌 ↔ 𝑋 = 𝑌 ) ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → ( 𝑋 I 𝑌 ↔ 𝑋 = 𝑌 ) ) |
| 20 |
17 19
|
bitr3id |
⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ I ↔ 𝑋 = 𝑌 ) ) |
| 21 |
20
|
necon3bbid |
⊢ ( 𝜑 → ( ¬ 〈 𝑋 , 𝑌 〉 ∈ I ↔ 𝑋 ≠ 𝑌 ) ) |
| 22 |
16 21
|
mpbid |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |