| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
|- P = ( Base ` G ) |
| 2 |
|
tglngval.l |
|- L = ( LineG ` G ) |
| 3 |
|
tglngval.i |
|- I = ( Itv ` G ) |
| 4 |
|
tglngval.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tglngval.x |
|- ( ph -> X e. P ) |
| 6 |
|
tglngval.y |
|- ( ph -> Y e. P ) |
| 7 |
|
tglngne.1 |
|- ( ph -> Z e. ( X L Y ) ) |
| 8 |
|
df-ov |
|- ( X L Y ) = ( L ` <. X , Y >. ) |
| 9 |
7 8
|
eleqtrdi |
|- ( ph -> Z e. ( L ` <. X , Y >. ) ) |
| 10 |
|
elfvdm |
|- ( Z e. ( L ` <. X , Y >. ) -> <. X , Y >. e. dom L ) |
| 11 |
9 10
|
syl |
|- ( ph -> <. X , Y >. e. dom L ) |
| 12 |
1 2 3
|
tglnfn |
|- ( G e. TarskiG -> L Fn ( ( P X. P ) \ _I ) ) |
| 13 |
|
fndm |
|- ( L Fn ( ( P X. P ) \ _I ) -> dom L = ( ( P X. P ) \ _I ) ) |
| 14 |
4 12 13
|
3syl |
|- ( ph -> dom L = ( ( P X. P ) \ _I ) ) |
| 15 |
11 14
|
eleqtrd |
|- ( ph -> <. X , Y >. e. ( ( P X. P ) \ _I ) ) |
| 16 |
15
|
eldifbd |
|- ( ph -> -. <. X , Y >. e. _I ) |
| 17 |
|
df-br |
|- ( X _I Y <-> <. X , Y >. e. _I ) |
| 18 |
|
ideqg |
|- ( Y e. P -> ( X _I Y <-> X = Y ) ) |
| 19 |
6 18
|
syl |
|- ( ph -> ( X _I Y <-> X = Y ) ) |
| 20 |
17 19
|
bitr3id |
|- ( ph -> ( <. X , Y >. e. _I <-> X = Y ) ) |
| 21 |
20
|
necon3bbid |
|- ( ph -> ( -. <. X , Y >. e. _I <-> X =/= Y ) ) |
| 22 |
16 21
|
mpbid |
|- ( ph -> X =/= Y ) |