Step |
Hyp |
Ref |
Expression |
1 |
|
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
3 |
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
6 |
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
7 |
|
tglngval.z |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
8 |
1 2 3
|
tglng |
⊢ ( 𝐺 ∈ TarskiG → 𝐿 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐿 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) ) |
10 |
9
|
oveqd |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) 𝑌 ) ) |
11 |
7
|
necomd |
⊢ ( 𝜑 → 𝑌 ≠ 𝑋 ) |
12 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) ↔ ( 𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋 ) ) |
13 |
6 11 12
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) ) |
14 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
15 |
14
|
rabex |
⊢ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ∈ V ) |
17 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐼 𝑦 ) = ( 𝑋 𝐼 𝑌 ) ) |
18 |
17
|
eleq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ↔ 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
19 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) |
20 |
|
simpr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
21 |
20
|
oveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑧 𝐼 𝑦 ) = ( 𝑧 𝐼 𝑌 ) ) |
22 |
19 21
|
eleq12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ) ) |
23 |
19
|
oveq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑧 ) ) |
24 |
20 23
|
eleq12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) |
25 |
18 22 24
|
3orbi123d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) ↔ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ) ) |
26 |
25
|
rabbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ) |
27 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
28 |
27
|
difeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑃 ∖ { 𝑥 } ) = ( 𝑃 ∖ { 𝑋 } ) ) |
29 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) |
30 |
26 28 29
|
ovmpox |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) ∧ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ∈ V ) → ( 𝑋 ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) 𝑌 ) = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ) |
31 |
5 13 16 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑥 𝐼 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝐼 𝑧 ) ) } ) 𝑌 ) = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ) |
32 |
10 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑌 ) = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ) |