Metamath Proof Explorer
		
		
		
		Description:  Lines are subset of the geometry base set.  That is, lines are sets of
         points.  (Contributed by Thierry Arnoux, 17-May-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | tglngval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | tglngval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
					
						|  |  | tglngval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
					
						|  |  | tglngval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
					
						|  |  | tglngval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
					
						|  |  | tglngval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
					
						|  |  | tglngval.z | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
				
					|  | Assertion | tglnssp | ⊢  ( 𝜑  →  ( 𝑋 𝐿 𝑌 )  ⊆  𝑃 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tglngval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tglngval.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 3 |  | tglngval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | tglngval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 5 |  | tglngval.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑃 ) | 
						
							| 6 |  | tglngval.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑃 ) | 
						
							| 7 |  | tglngval.z | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | tglngval | ⊢ ( 𝜑  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑧  ∈  𝑃  ∣  ( 𝑧  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑋  ∈  ( 𝑧 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑧 ) ) } ) | 
						
							| 9 |  | ssrab2 | ⊢ { 𝑧  ∈  𝑃  ∣  ( 𝑧  ∈  ( 𝑋 𝐼 𝑌 )  ∨  𝑋  ∈  ( 𝑧 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝑋 𝐼 𝑧 ) ) }  ⊆  𝑃 | 
						
							| 10 | 8 9 | eqsstrdi | ⊢ ( 𝜑  →  ( 𝑋 𝐿 𝑌 )  ⊆  𝑃 ) |