Description: Lines are subset of the geometry base set. That is, lines are sets of points. (Contributed by Thierry Arnoux, 17-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tglngval.p | |- P = ( Base ` G ) |
|
| tglngval.l | |- L = ( LineG ` G ) |
||
| tglngval.i | |- I = ( Itv ` G ) |
||
| tglngval.g | |- ( ph -> G e. TarskiG ) |
||
| tglngval.x | |- ( ph -> X e. P ) |
||
| tglngval.y | |- ( ph -> Y e. P ) |
||
| tglngval.z | |- ( ph -> X =/= Y ) |
||
| Assertion | tglnssp | |- ( ph -> ( X L Y ) C_ P ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p | |- P = ( Base ` G ) |
|
| 2 | tglngval.l | |- L = ( LineG ` G ) |
|
| 3 | tglngval.i | |- I = ( Itv ` G ) |
|
| 4 | tglngval.g | |- ( ph -> G e. TarskiG ) |
|
| 5 | tglngval.x | |- ( ph -> X e. P ) |
|
| 6 | tglngval.y | |- ( ph -> Y e. P ) |
|
| 7 | tglngval.z | |- ( ph -> X =/= Y ) |
|
| 8 | 1 2 3 4 5 6 7 | tglngval | |- ( ph -> ( X L Y ) = { z e. P | ( z e. ( X I Y ) \/ X e. ( z I Y ) \/ Y e. ( X I z ) ) } ) |
| 9 | ssrab2 | |- { z e. P | ( z e. ( X I Y ) \/ X e. ( z I Y ) \/ Y e. ( X I z ) ) } C_ P |
|
| 10 | 8 9 | eqsstrdi | |- ( ph -> ( X L Y ) C_ P ) |