| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tglngval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tglngval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 3 |
|
tglngval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tglngval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tglngval.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
| 6 |
|
tglngval.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
| 7 |
|
tglngval.z |
⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) |
| 8 |
|
tgellng.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
| 9 |
1 2 3 4 5 6 7
|
tglngval |
⊢ ( 𝜑 → ( 𝑋 𝐿 𝑌 ) = { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ) |
| 10 |
9
|
eleq2d |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ 𝑍 ∈ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ) ) |
| 11 |
|
eleq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 𝐼 𝑌 ) = ( 𝑍 𝐼 𝑌 ) ) |
| 13 |
12
|
eleq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ↔ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑧 = 𝑍 → ( 𝑋 𝐼 𝑧 ) = ( 𝑋 𝐼 𝑍 ) ) |
| 15 |
14
|
eleq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ↔ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) |
| 16 |
11 13 15
|
3orbi123d |
⊢ ( 𝑧 = 𝑍 → ( ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |
| 17 |
16
|
elrab |
⊢ ( 𝑍 ∈ { 𝑧 ∈ 𝑃 ∣ ( 𝑧 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑧 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑧 ) ) } ↔ ( 𝑍 ∈ 𝑃 ∧ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |
| 18 |
10 17
|
bitrdi |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ 𝑃 ∧ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) ) |
| 19 |
8 18
|
mpbirand |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝑋 𝐿 𝑌 ) ↔ ( 𝑍 ∈ ( 𝑋 𝐼 𝑌 ) ∨ 𝑋 ∈ ( 𝑍 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝑋 𝐼 𝑍 ) ) ) ) |