Metamath Proof Explorer


Theorem btwnhl2

Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses ishlg.p P=BaseG
ishlg.i I=ItvG
ishlg.k K=hl𝒢G
ishlg.a φAP
ishlg.b φBP
ishlg.c φCP
hlln.1 φG𝒢Tarski
hltr.d φDP
btwnhl1.1 φCAIB
btwnhl1.2 φAB
btwnhl2.3 φCB
Assertion btwnhl2 φCKBA

Proof

Step Hyp Ref Expression
1 ishlg.p P=BaseG
2 ishlg.i I=ItvG
3 ishlg.k K=hl𝒢G
4 ishlg.a φAP
5 ishlg.b φBP
6 ishlg.c φCP
7 hlln.1 φG𝒢Tarski
8 hltr.d φDP
9 btwnhl1.1 φCAIB
10 btwnhl1.2 φAB
11 btwnhl2.3 φCB
12 eqid distG=distG
13 1 12 2 7 4 6 5 9 tgbtwncom φCBIA
14 13 orcd φCBIAABIC
15 1 2 3 6 4 5 7 ishlg φCKBACBABCBIAABIC
16 11 10 14 15 mpbir3and φCKBA