Description: Deduce half-line from betweenness. (Contributed by Thierry Arnoux, 4-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ishlg.p | |- P = ( Base ` G ) | |
| ishlg.i | |- I = ( Itv ` G ) | ||
| ishlg.k | |- K = ( hlG ` G ) | ||
| ishlg.a | |- ( ph -> A e. P ) | ||
| ishlg.b | |- ( ph -> B e. P ) | ||
| ishlg.c | |- ( ph -> C e. P ) | ||
| hlln.1 | |- ( ph -> G e. TarskiG ) | ||
| hltr.d | |- ( ph -> D e. P ) | ||
| btwnhl1.1 | |- ( ph -> C e. ( A I B ) ) | ||
| btwnhl1.2 | |- ( ph -> A =/= B ) | ||
| btwnhl1.3 | |- ( ph -> C =/= A ) | ||
| Assertion | btwnhl1 | |- ( ph -> C ( K ` A ) B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ishlg.p | |- P = ( Base ` G ) | |
| 2 | ishlg.i | |- I = ( Itv ` G ) | |
| 3 | ishlg.k | |- K = ( hlG ` G ) | |
| 4 | ishlg.a | |- ( ph -> A e. P ) | |
| 5 | ishlg.b | |- ( ph -> B e. P ) | |
| 6 | ishlg.c | |- ( ph -> C e. P ) | |
| 7 | hlln.1 | |- ( ph -> G e. TarskiG ) | |
| 8 | hltr.d | |- ( ph -> D e. P ) | |
| 9 | btwnhl1.1 | |- ( ph -> C e. ( A I B ) ) | |
| 10 | btwnhl1.2 | |- ( ph -> A =/= B ) | |
| 11 | btwnhl1.3 | |- ( ph -> C =/= A ) | |
| 12 | 10 | necomd | |- ( ph -> B =/= A ) | 
| 13 | 9 | orcd | |- ( ph -> ( C e. ( A I B ) \/ B e. ( A I C ) ) ) | 
| 14 | 1 2 3 6 5 4 7 | ishlg | |- ( ph -> ( C ( K ` A ) B <-> ( C =/= A /\ B =/= A /\ ( C e. ( A I B ) \/ B e. ( A I C ) ) ) ) ) | 
| 15 | 11 12 13 14 | mpbir3and | |- ( ph -> C ( K ` A ) B ) |