| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn1.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgbtwnconn1.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tgbtwnconn1.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 4 |
|
tgbtwnconn1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
tgbtwnconn1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
tgbtwnconn1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 7 |
|
tgbtwnconn1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 8 |
|
tgbtwnconn1.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 9 |
|
tgbtwnconn1.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 10 |
|
tgbtwnconn1.3 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 11 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) |
| 12 |
11
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 = 𝑒 ) → 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ) |
| 14 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 = 𝑒 ) → 𝐶 = 𝑒 ) |
| 15 |
14
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 = 𝑒 ) → ( 𝐴 𝐼 𝐶 ) = ( 𝐴 𝐼 𝑒 ) ) |
| 16 |
13 15
|
eleqtrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 = 𝑒 ) → 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 17 |
16
|
olcd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 = 𝑒 ) → ( 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
| 18 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐷 = 𝑓 ) → 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ) |
| 20 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐷 = 𝑓 ) → 𝐷 = 𝑓 ) |
| 21 |
20
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐷 = 𝑓 ) → ( 𝐴 𝐼 𝐷 ) = ( 𝐴 𝐼 𝑓 ) ) |
| 22 |
19 21
|
eleqtrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐷 = 𝑓 ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 23 |
22
|
orcd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐷 = 𝑓 ) → ( 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
| 24 |
|
df-ne |
⊢ ( 𝐶 ≠ 𝑒 ↔ ¬ 𝐶 = 𝑒 ) |
| 25 |
3
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐺 ∈ TarskiG ) |
| 26 |
25
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐺 ∈ TarskiG ) |
| 27 |
4
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 28 |
27
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 29 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 30 |
29
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 31 |
6
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 32 |
31
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 33 |
7
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐷 ∈ 𝑃 ) |
| 34 |
33
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐷 ∈ 𝑃 ) |
| 35 |
|
simp-11l |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝜑 ) |
| 36 |
35 8
|
syl |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐴 ≠ 𝐵 ) |
| 37 |
35 9
|
syl |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 38 |
35 10
|
syl |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 39 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 40 |
|
simp-4r |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝑒 ∈ 𝑃 ) |
| 41 |
40
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝑒 ∈ 𝑃 ) |
| 42 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝑓 ∈ 𝑃 ) |
| 43 |
42
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝑓 ∈ 𝑃 ) |
| 44 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → ℎ ∈ 𝑃 ) |
| 45 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝑗 ∈ 𝑃 ) |
| 46 |
12
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ) |
| 47 |
18
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ) |
| 48 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) |
| 49 |
48
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ) |
| 50 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) |
| 51 |
50
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ) |
| 52 |
11
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) |
| 53 |
52
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) |
| 54 |
1 39 2 26 34 41 34 32 53
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → ( 𝑒 ( dist ‘ 𝐺 ) 𝐷 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) |
| 55 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) |
| 56 |
55
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) |
| 57 |
48
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) |
| 58 |
50
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) |
| 59 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝑥 ∈ 𝑃 ) |
| 60 |
|
simprl |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ) |
| 61 |
|
simprr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) |
| 62 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐶 ≠ 𝑒 ) |
| 63 |
1 2 26 28 30 32 34 36 37 38 39 41 43 44 45 46 47 49 51 54 56 57 58 59 60 61 62
|
tgbtwnconn1lem3 |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝑥 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) → 𝐷 = 𝑓 ) |
| 64 |
1 39 2 25 27 31 42 18
|
tgbtwncom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐶 ∈ ( 𝑓 𝐼 𝐴 ) ) |
| 65 |
1 39 2 25 27 33 40 12
|
tgbtwncom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐷 ∈ ( 𝑒 𝐼 𝐴 ) ) |
| 66 |
1 39 2 25 42 40 27 31 33 64 65
|
axtgpasch |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) |
| 67 |
66
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐶 𝐼 𝑒 ) ∧ 𝑥 ∈ ( 𝐷 𝐼 𝑓 ) ) ) |
| 68 |
63 67
|
r19.29a |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑗 ∈ 𝑃 ) ∧ ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → 𝐷 = 𝑓 ) |
| 69 |
1 39 2 25 27 42 29 33
|
axtgsegcon |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ∃ 𝑗 ∈ 𝑃 ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) |
| 70 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) → ∃ 𝑗 ∈ 𝑃 ( 𝑓 ∈ ( 𝐴 𝐼 𝑗 ) ∧ ( 𝑓 ( dist ‘ 𝐺 ) 𝑗 ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐷 ) ) ) |
| 71 |
68 70
|
r19.29a |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) ∧ ℎ ∈ 𝑃 ) ∧ ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) → 𝐷 = 𝑓 ) |
| 72 |
1 39 2 25 27 40 29 31
|
axtgsegcon |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ∃ ℎ ∈ 𝑃 ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) |
| 73 |
72
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) → ∃ ℎ ∈ 𝑃 ( 𝑒 ∈ ( 𝐴 𝐼 ℎ ) ∧ ( 𝑒 ( dist ‘ 𝐺 ) ℎ ) = ( 𝐵 ( dist ‘ 𝐺 ) 𝐶 ) ) ) |
| 74 |
71 73
|
r19.29a |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) ∧ 𝐶 ≠ 𝑒 ) → 𝐷 = 𝑓 ) |
| 75 |
74
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ( 𝐶 ≠ 𝑒 → 𝐷 = 𝑓 ) ) |
| 76 |
24 75
|
biimtrrid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ( ¬ 𝐶 = 𝑒 → 𝐷 = 𝑓 ) ) |
| 77 |
76
|
orrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ( 𝐶 = 𝑒 ∨ 𝐷 = 𝑓 ) ) |
| 78 |
17 23 77
|
mpjaodan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) ∧ 𝑓 ∈ 𝑃 ) ∧ ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) → ( 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
| 79 |
1 39 2 3 4 6 6 7
|
axtgsegcon |
⊢ ( 𝜑 → ∃ 𝑓 ∈ 𝑃 ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) |
| 80 |
79
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) → ∃ 𝑓 ∈ 𝑃 ( 𝐶 ∈ ( 𝐴 𝐼 𝑓 ) ∧ ( 𝐶 ( dist ‘ 𝐺 ) 𝑓 ) = ( 𝐶 ( dist ‘ 𝐺 ) 𝐷 ) ) ) |
| 81 |
78 80
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ 𝑃 ) ∧ ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) → ( 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |
| 82 |
1 39 2 3 4 7 7 6
|
axtgsegcon |
⊢ ( 𝜑 → ∃ 𝑒 ∈ 𝑃 ( 𝐷 ∈ ( 𝐴 𝐼 𝑒 ) ∧ ( 𝐷 ( dist ‘ 𝐺 ) 𝑒 ) = ( 𝐷 ( dist ‘ 𝐺 ) 𝐶 ) ) ) |
| 83 |
81 82
|
r19.29a |
⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ∨ 𝐷 ∈ ( 𝐴 𝐼 𝐶 ) ) ) |