| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn1.p |
|- P = ( Base ` G ) |
| 2 |
|
tgbtwnconn1.i |
|- I = ( Itv ` G ) |
| 3 |
|
tgbtwnconn1.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
tgbtwnconn1.a |
|- ( ph -> A e. P ) |
| 5 |
|
tgbtwnconn1.b |
|- ( ph -> B e. P ) |
| 6 |
|
tgbtwnconn1.c |
|- ( ph -> C e. P ) |
| 7 |
|
tgbtwnconn1.d |
|- ( ph -> D e. P ) |
| 8 |
|
tgbtwnconn1.1 |
|- ( ph -> A =/= B ) |
| 9 |
|
tgbtwnconn1.2 |
|- ( ph -> B e. ( A I C ) ) |
| 10 |
|
tgbtwnconn1.3 |
|- ( ph -> B e. ( A I D ) ) |
| 11 |
|
simpllr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) |
| 12 |
11
|
simpld |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> D e. ( A I e ) ) |
| 13 |
12
|
adantr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> D e. ( A I e ) ) |
| 14 |
|
simpr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> C = e ) |
| 15 |
14
|
oveq2d |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> ( A I C ) = ( A I e ) ) |
| 16 |
13 15
|
eleqtrrd |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> D e. ( A I C ) ) |
| 17 |
16
|
olcd |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C = e ) -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
| 18 |
|
simprl |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> C e. ( A I f ) ) |
| 19 |
18
|
adantr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> C e. ( A I f ) ) |
| 20 |
|
simpr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> D = f ) |
| 21 |
20
|
oveq2d |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> ( A I D ) = ( A I f ) ) |
| 22 |
19 21
|
eleqtrrd |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> C e. ( A I D ) ) |
| 23 |
22
|
orcd |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ D = f ) -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
| 24 |
|
df-ne |
|- ( C =/= e <-> -. C = e ) |
| 25 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> G e. TarskiG ) |
| 26 |
25
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> G e. TarskiG ) |
| 27 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> A e. P ) |
| 28 |
27
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> A e. P ) |
| 29 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> B e. P ) |
| 30 |
29
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> B e. P ) |
| 31 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> C e. P ) |
| 32 |
31
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> C e. P ) |
| 33 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> D e. P ) |
| 34 |
33
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> D e. P ) |
| 35 |
|
simp-11l |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ph ) |
| 36 |
35 8
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> A =/= B ) |
| 37 |
35 9
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> B e. ( A I C ) ) |
| 38 |
35 10
|
syl |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> B e. ( A I D ) ) |
| 39 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 40 |
|
simp-4r |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> e e. P ) |
| 41 |
40
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> e e. P ) |
| 42 |
|
simplr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> f e. P ) |
| 43 |
42
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> f e. P ) |
| 44 |
|
simp-6r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> h e. P ) |
| 45 |
|
simp-4r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> j e. P ) |
| 46 |
12
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> D e. ( A I e ) ) |
| 47 |
18
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> C e. ( A I f ) ) |
| 48 |
|
simp-5r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) |
| 49 |
48
|
simpld |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> e e. ( A I h ) ) |
| 50 |
|
simpllr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) |
| 51 |
50
|
simpld |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> f e. ( A I j ) ) |
| 52 |
11
|
simprd |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) |
| 53 |
52
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) |
| 54 |
1 39 2 26 34 41 34 32 53
|
tgcgrcomlr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( e ( dist ` G ) D ) = ( C ( dist ` G ) D ) ) |
| 55 |
|
simprr |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) |
| 56 |
55
|
ad7antr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) |
| 57 |
48
|
simprd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) |
| 58 |
50
|
simprd |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) |
| 59 |
|
simplr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> x e. P ) |
| 60 |
|
simprl |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> x e. ( C I e ) ) |
| 61 |
|
simprr |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> x e. ( D I f ) ) |
| 62 |
|
simp-7r |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> C =/= e ) |
| 63 |
1 2 26 28 30 32 34 36 37 38 39 41 43 44 45 46 47 49 51 54 56 57 58 59 60 61 62
|
tgbtwnconn1lem3 |
|- ( ( ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) /\ x e. P ) /\ ( x e. ( C I e ) /\ x e. ( D I f ) ) ) -> D = f ) |
| 64 |
1 39 2 25 27 31 42 18
|
tgbtwncom |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> C e. ( f I A ) ) |
| 65 |
1 39 2 25 27 33 40 12
|
tgbtwncom |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> D e. ( e I A ) ) |
| 66 |
1 39 2 25 42 40 27 31 33 64 65
|
axtgpasch |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> E. x e. P ( x e. ( C I e ) /\ x e. ( D I f ) ) ) |
| 67 |
66
|
ad5antr |
|- ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) -> E. x e. P ( x e. ( C I e ) /\ x e. ( D I f ) ) ) |
| 68 |
63 67
|
r19.29a |
|- ( ( ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) /\ j e. P ) /\ ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) -> D = f ) |
| 69 |
1 39 2 25 27 42 29 33
|
axtgsegcon |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> E. j e. P ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) |
| 70 |
69
|
ad3antrrr |
|- ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) -> E. j e. P ( f e. ( A I j ) /\ ( f ( dist ` G ) j ) = ( B ( dist ` G ) D ) ) ) |
| 71 |
68 70
|
r19.29a |
|- ( ( ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) /\ h e. P ) /\ ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) -> D = f ) |
| 72 |
1 39 2 25 27 40 29 31
|
axtgsegcon |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> E. h e. P ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) |
| 73 |
72
|
adantr |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) -> E. h e. P ( e e. ( A I h ) /\ ( e ( dist ` G ) h ) = ( B ( dist ` G ) C ) ) ) |
| 74 |
71 73
|
r19.29a |
|- ( ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) /\ C =/= e ) -> D = f ) |
| 75 |
74
|
ex |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( C =/= e -> D = f ) ) |
| 76 |
24 75
|
biimtrrid |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( -. C = e -> D = f ) ) |
| 77 |
76
|
orrd |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( C = e \/ D = f ) ) |
| 78 |
17 23 77
|
mpjaodan |
|- ( ( ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) /\ f e. P ) /\ ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
| 79 |
1 39 2 3 4 6 6 7
|
axtgsegcon |
|- ( ph -> E. f e. P ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) |
| 80 |
79
|
ad2antrr |
|- ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) -> E. f e. P ( C e. ( A I f ) /\ ( C ( dist ` G ) f ) = ( C ( dist ` G ) D ) ) ) |
| 81 |
78 80
|
r19.29a |
|- ( ( ( ph /\ e e. P ) /\ ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
| 82 |
1 39 2 3 4 7 7 6
|
axtgsegcon |
|- ( ph -> E. e e. P ( D e. ( A I e ) /\ ( D ( dist ` G ) e ) = ( D ( dist ` G ) C ) ) ) |
| 83 |
81 82
|
r19.29a |
|- ( ph -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |