| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn.p |
|- P = ( Base ` G ) |
| 2 |
|
tgbtwnconn.i |
|- I = ( Itv ` G ) |
| 3 |
|
tgbtwnconn.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
tgbtwnconn.a |
|- ( ph -> A e. P ) |
| 5 |
|
tgbtwnconn.b |
|- ( ph -> B e. P ) |
| 6 |
|
tgbtwnconn.c |
|- ( ph -> C e. P ) |
| 7 |
|
tgbtwnconn.d |
|- ( ph -> D e. P ) |
| 8 |
|
tgbtwnconn2.1 |
|- ( ph -> A =/= B ) |
| 9 |
|
tgbtwnconn2.2 |
|- ( ph -> B e. ( A I C ) ) |
| 10 |
|
tgbtwnconn2.3 |
|- ( ph -> B e. ( A I D ) ) |
| 11 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ C e. ( A I D ) ) -> G e. TarskiG ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ C e. ( A I D ) ) -> A e. P ) |
| 14 |
5
|
adantr |
|- ( ( ph /\ C e. ( A I D ) ) -> B e. P ) |
| 15 |
6
|
adantr |
|- ( ( ph /\ C e. ( A I D ) ) -> C e. P ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ C e. ( A I D ) ) -> D e. P ) |
| 17 |
9
|
adantr |
|- ( ( ph /\ C e. ( A I D ) ) -> B e. ( A I C ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ C e. ( A I D ) ) -> C e. ( A I D ) ) |
| 19 |
1 11 2 12 13 14 15 16 17 18
|
tgbtwnexch3 |
|- ( ( ph /\ C e. ( A I D ) ) -> C e. ( B I D ) ) |
| 20 |
19
|
orcd |
|- ( ( ph /\ C e. ( A I D ) ) -> ( C e. ( B I D ) \/ D e. ( B I C ) ) ) |
| 21 |
3
|
adantr |
|- ( ( ph /\ D e. ( A I C ) ) -> G e. TarskiG ) |
| 22 |
4
|
adantr |
|- ( ( ph /\ D e. ( A I C ) ) -> A e. P ) |
| 23 |
5
|
adantr |
|- ( ( ph /\ D e. ( A I C ) ) -> B e. P ) |
| 24 |
7
|
adantr |
|- ( ( ph /\ D e. ( A I C ) ) -> D e. P ) |
| 25 |
6
|
adantr |
|- ( ( ph /\ D e. ( A I C ) ) -> C e. P ) |
| 26 |
10
|
adantr |
|- ( ( ph /\ D e. ( A I C ) ) -> B e. ( A I D ) ) |
| 27 |
|
simpr |
|- ( ( ph /\ D e. ( A I C ) ) -> D e. ( A I C ) ) |
| 28 |
1 11 2 21 22 23 24 25 26 27
|
tgbtwnexch3 |
|- ( ( ph /\ D e. ( A I C ) ) -> D e. ( B I C ) ) |
| 29 |
28
|
olcd |
|- ( ( ph /\ D e. ( A I C ) ) -> ( C e. ( B I D ) \/ D e. ( B I C ) ) ) |
| 30 |
1 2 3 4 5 6 7 8 9 10
|
tgbtwnconn1 |
|- ( ph -> ( C e. ( A I D ) \/ D e. ( A I C ) ) ) |
| 31 |
20 29 30
|
mpjaodan |
|- ( ph -> ( C e. ( B I D ) \/ D e. ( B I C ) ) ) |