| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgbtwnconn.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tgbtwnconn.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | tgbtwnconn.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 4 |  | tgbtwnconn.a |  |-  ( ph -> A e. P ) | 
						
							| 5 |  | tgbtwnconn.b |  |-  ( ph -> B e. P ) | 
						
							| 6 |  | tgbtwnconn.c |  |-  ( ph -> C e. P ) | 
						
							| 7 |  | tgbtwnconn.d |  |-  ( ph -> D e. P ) | 
						
							| 8 |  | tgbtwnconn3.1 |  |-  ( ph -> B e. ( A I D ) ) | 
						
							| 9 |  | tgbtwnconn3.2 |  |-  ( ph -> C e. ( A I D ) ) | 
						
							| 10 |  | eqid |  |-  ( dist ` G ) = ( dist ` G ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> G e. TarskiG ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> B e. P ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> A e. P ) | 
						
							| 14 | 6 | adantr |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> C e. P ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> ( # ` P ) = 1 ) | 
						
							| 16 | 1 10 2 11 12 13 14 15 | tgldim0itv |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> B e. ( A I C ) ) | 
						
							| 17 | 16 | orcd |  |-  ( ( ph /\ ( # ` P ) = 1 ) -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) | 
						
							| 18 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> G e. TarskiG ) | 
						
							| 19 |  | simplr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> p e. P ) | 
						
							| 20 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. P ) | 
						
							| 21 | 5 | ad3antrrr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> B e. P ) | 
						
							| 22 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> C e. P ) | 
						
							| 23 |  | simprr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A =/= p ) | 
						
							| 24 | 23 | necomd |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> p =/= A ) | 
						
							| 25 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> D e. P ) | 
						
							| 26 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> B e. ( A I D ) ) | 
						
							| 27 |  | simprl |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( D I p ) ) | 
						
							| 28 | 1 10 2 18 25 20 19 27 | tgbtwncom |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( p I D ) ) | 
						
							| 29 | 1 10 2 18 21 20 19 25 26 28 | tgbtwnintr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( B I p ) ) | 
						
							| 30 | 1 10 2 18 21 20 19 29 | tgbtwncom |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( p I B ) ) | 
						
							| 31 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> C e. ( A I D ) ) | 
						
							| 32 | 1 10 2 18 20 22 25 31 | tgbtwncom |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> C e. ( D I A ) ) | 
						
							| 33 | 1 10 2 18 25 22 20 19 32 27 | tgbtwnexch3 |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( C I p ) ) | 
						
							| 34 | 1 10 2 18 22 20 19 33 | tgbtwncom |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> A e. ( p I C ) ) | 
						
							| 35 | 1 2 18 19 20 21 22 24 30 34 | tgbtwnconn2 |  |-  ( ( ( ( ph /\ 2 <_ ( # ` P ) ) /\ p e. P ) /\ ( A e. ( D I p ) /\ A =/= p ) ) -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) | 
						
							| 36 | 3 | adantr |  |-  ( ( ph /\ 2 <_ ( # ` P ) ) -> G e. TarskiG ) | 
						
							| 37 | 7 | adantr |  |-  ( ( ph /\ 2 <_ ( # ` P ) ) -> D e. P ) | 
						
							| 38 | 4 | adantr |  |-  ( ( ph /\ 2 <_ ( # ` P ) ) -> A e. P ) | 
						
							| 39 |  | simpr |  |-  ( ( ph /\ 2 <_ ( # ` P ) ) -> 2 <_ ( # ` P ) ) | 
						
							| 40 | 1 10 2 36 37 38 39 | tgbtwndiff |  |-  ( ( ph /\ 2 <_ ( # ` P ) ) -> E. p e. P ( A e. ( D I p ) /\ A =/= p ) ) | 
						
							| 41 | 35 40 | r19.29a |  |-  ( ( ph /\ 2 <_ ( # ` P ) ) -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) | 
						
							| 42 | 1 4 | tgldimor |  |-  ( ph -> ( ( # ` P ) = 1 \/ 2 <_ ( # ` P ) ) ) | 
						
							| 43 | 17 41 42 | mpjaodan |  |-  ( ph -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |