| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwndiff.p |
|- P = ( Base ` G ) |
| 2 |
|
tgbtwndiff.d |
|- .- = ( dist ` G ) |
| 3 |
|
tgbtwndiff.i |
|- I = ( Itv ` G ) |
| 4 |
|
tgbtwndiff.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
tgbtwndiff.a |
|- ( ph -> A e. P ) |
| 6 |
|
tgbtwndiff.b |
|- ( ph -> B e. P ) |
| 7 |
|
tgbtwndiff.l |
|- ( ph -> 2 <_ ( # ` P ) ) |
| 8 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> G e. TarskiG ) |
| 9 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> A e. P ) |
| 10 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> B e. P ) |
| 11 |
|
simpllr |
|- ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> u e. P ) |
| 12 |
|
simplr |
|- ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> v e. P ) |
| 13 |
1 2 3 8 9 10 11 12
|
axtgsegcon |
|- ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> E. c e. P ( B e. ( A I c ) /\ ( B .- c ) = ( u .- v ) ) ) |
| 14 |
8
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> G e. TarskiG ) |
| 15 |
11
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> u e. P ) |
| 16 |
12
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> v e. P ) |
| 17 |
10
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> B e. P ) |
| 18 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> B = c ) |
| 19 |
18
|
oveq2d |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> ( B .- B ) = ( B .- c ) ) |
| 20 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> ( B .- c ) = ( u .- v ) ) |
| 21 |
19 20
|
eqtr2d |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> ( u .- v ) = ( B .- B ) ) |
| 22 |
1 2 3 14 15 16 17 21
|
axtgcgrid |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> u = v ) |
| 23 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> u =/= v ) |
| 24 |
23
|
neneqd |
|- ( ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) /\ B = c ) -> -. u = v ) |
| 25 |
22 24
|
pm2.65da |
|- ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) -> -. B = c ) |
| 26 |
25
|
neqned |
|- ( ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) /\ ( B .- c ) = ( u .- v ) ) -> B =/= c ) |
| 27 |
26
|
ex |
|- ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) -> ( ( B .- c ) = ( u .- v ) -> B =/= c ) ) |
| 28 |
27
|
anim2d |
|- ( ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) /\ c e. P ) -> ( ( B e. ( A I c ) /\ ( B .- c ) = ( u .- v ) ) -> ( B e. ( A I c ) /\ B =/= c ) ) ) |
| 29 |
28
|
reximdva |
|- ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> ( E. c e. P ( B e. ( A I c ) /\ ( B .- c ) = ( u .- v ) ) -> E. c e. P ( B e. ( A I c ) /\ B =/= c ) ) ) |
| 30 |
13 29
|
mpd |
|- ( ( ( ( ph /\ u e. P ) /\ v e. P ) /\ u =/= v ) -> E. c e. P ( B e. ( A I c ) /\ B =/= c ) ) |
| 31 |
1 2 3 4 7
|
tglowdim1 |
|- ( ph -> E. u e. P E. v e. P u =/= v ) |
| 32 |
30 31
|
r19.29vva |
|- ( ph -> E. c e. P ( B e. ( A I c ) /\ B =/= c ) ) |