Metamath Proof Explorer


Theorem tgbtwndiff

Description: There is always a c distinct from B such that B lies between A and c . Theorem 3.14 of Schwabhauser p. 32. The condition "the space is of dimension 1 or more" is written here as 2 <_ ( #P ) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tgbtwndiff.p P=BaseG
tgbtwndiff.d -˙=distG
tgbtwndiff.i I=ItvG
tgbtwndiff.g φG𝒢Tarski
tgbtwndiff.a φAP
tgbtwndiff.b φBP
tgbtwndiff.l φ2P
Assertion tgbtwndiff φcPBAIcBc

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p P=BaseG
2 tgbtwndiff.d -˙=distG
3 tgbtwndiff.i I=ItvG
4 tgbtwndiff.g φG𝒢Tarski
5 tgbtwndiff.a φAP
6 tgbtwndiff.b φBP
7 tgbtwndiff.l φ2P
8 4 ad3antrrr φuPvPuvG𝒢Tarski
9 5 ad3antrrr φuPvPuvAP
10 6 ad3antrrr φuPvPuvBP
11 simpllr φuPvPuvuP
12 simplr φuPvPuvvP
13 1 2 3 8 9 10 11 12 axtgsegcon φuPvPuvcPBAIcB-˙c=u-˙v
14 8 ad3antrrr φuPvPuvcPB-˙c=u-˙vB=cG𝒢Tarski
15 11 ad3antrrr φuPvPuvcPB-˙c=u-˙vB=cuP
16 12 ad3antrrr φuPvPuvcPB-˙c=u-˙vB=cvP
17 10 ad3antrrr φuPvPuvcPB-˙c=u-˙vB=cBP
18 simpr φuPvPuvcPB-˙c=u-˙vB=cB=c
19 18 oveq2d φuPvPuvcPB-˙c=u-˙vB=cB-˙B=B-˙c
20 simplr φuPvPuvcPB-˙c=u-˙vB=cB-˙c=u-˙v
21 19 20 eqtr2d φuPvPuvcPB-˙c=u-˙vB=cu-˙v=B-˙B
22 1 2 3 14 15 16 17 21 axtgcgrid φuPvPuvcPB-˙c=u-˙vB=cu=v
23 simp-4r φuPvPuvcPB-˙c=u-˙vB=cuv
24 23 neneqd φuPvPuvcPB-˙c=u-˙vB=c¬u=v
25 22 24 pm2.65da φuPvPuvcPB-˙c=u-˙v¬B=c
26 25 neqned φuPvPuvcPB-˙c=u-˙vBc
27 26 ex φuPvPuvcPB-˙c=u-˙vBc
28 27 anim2d φuPvPuvcPBAIcB-˙c=u-˙vBAIcBc
29 28 reximdva φuPvPuvcPBAIcB-˙c=u-˙vcPBAIcBc
30 13 29 mpd φuPvPuvcPBAIcBc
31 1 2 3 4 7 tglowdim1 φuPvPuv
32 30 31 r19.29vva φcPBAIcBc