Description: There is always a c distinct from B such that B lies between A and c . Theorem 3.14 of Schwabhauser p. 32. The condition "the space is of dimension 1 or more" is written here as 2 <_ ( #P ) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgbtwndiff.p | |
|
tgbtwndiff.d | |
||
tgbtwndiff.i | |
||
tgbtwndiff.g | |
||
tgbtwndiff.a | |
||
tgbtwndiff.b | |
||
tgbtwndiff.l | |
||
Assertion | tgbtwndiff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwndiff.p | |
|
2 | tgbtwndiff.d | |
|
3 | tgbtwndiff.i | |
|
4 | tgbtwndiff.g | |
|
5 | tgbtwndiff.a | |
|
6 | tgbtwndiff.b | |
|
7 | tgbtwndiff.l | |
|
8 | 4 | ad3antrrr | |
9 | 5 | ad3antrrr | |
10 | 6 | ad3antrrr | |
11 | simpllr | |
|
12 | simplr | |
|
13 | 1 2 3 8 9 10 11 12 | axtgsegcon | |
14 | 8 | ad3antrrr | |
15 | 11 | ad3antrrr | |
16 | 12 | ad3antrrr | |
17 | 10 | ad3antrrr | |
18 | simpr | |
|
19 | 18 | oveq2d | |
20 | simplr | |
|
21 | 19 20 | eqtr2d | |
22 | 1 2 3 14 15 16 17 21 | axtgcgrid | |
23 | simp-4r | |
|
24 | 23 | neneqd | |
25 | 22 24 | pm2.65da | |
26 | 25 | neqned | |
27 | 26 | ex | |
28 | 27 | anim2d | |
29 | 28 | reximdva | |
30 | 13 29 | mpd | |
31 | 1 2 3 4 7 | tglowdim1 | |
32 | 30 31 | r19.29vva | |