Metamath Proof Explorer


Theorem tgbtwndiff

Description: There is always a c distinct from B such that B lies between A and c . Theorem 3.14 of Schwabhauser p. 32. The condition "the space is of dimension 1 or more" is written here as 2 <_ ( #P ) for simplicity. (Contributed by Thierry Arnoux, 23-Mar-2019)

Ref Expression
Hypotheses tgbtwndiff.p P = Base G
tgbtwndiff.d - ˙ = dist G
tgbtwndiff.i I = Itv G
tgbtwndiff.g φ G 𝒢 Tarski
tgbtwndiff.a φ A P
tgbtwndiff.b φ B P
tgbtwndiff.l φ 2 P
Assertion tgbtwndiff φ c P B A I c B c

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p P = Base G
2 tgbtwndiff.d - ˙ = dist G
3 tgbtwndiff.i I = Itv G
4 tgbtwndiff.g φ G 𝒢 Tarski
5 tgbtwndiff.a φ A P
6 tgbtwndiff.b φ B P
7 tgbtwndiff.l φ 2 P
8 4 ad3antrrr φ u P v P u v G 𝒢 Tarski
9 5 ad3antrrr φ u P v P u v A P
10 6 ad3antrrr φ u P v P u v B P
11 simpllr φ u P v P u v u P
12 simplr φ u P v P u v v P
13 1 2 3 8 9 10 11 12 axtgsegcon φ u P v P u v c P B A I c B - ˙ c = u - ˙ v
14 8 ad3antrrr φ u P v P u v c P B - ˙ c = u - ˙ v B = c G 𝒢 Tarski
15 11 ad3antrrr φ u P v P u v c P B - ˙ c = u - ˙ v B = c u P
16 12 ad3antrrr φ u P v P u v c P B - ˙ c = u - ˙ v B = c v P
17 10 ad3antrrr φ u P v P u v c P B - ˙ c = u - ˙ v B = c B P
18 simpr φ u P v P u v c P B - ˙ c = u - ˙ v B = c B = c
19 18 oveq2d φ u P v P u v c P B - ˙ c = u - ˙ v B = c B - ˙ B = B - ˙ c
20 simplr φ u P v P u v c P B - ˙ c = u - ˙ v B = c B - ˙ c = u - ˙ v
21 19 20 eqtr2d φ u P v P u v c P B - ˙ c = u - ˙ v B = c u - ˙ v = B - ˙ B
22 1 2 3 14 15 16 17 21 axtgcgrid φ u P v P u v c P B - ˙ c = u - ˙ v B = c u = v
23 simp-4r φ u P v P u v c P B - ˙ c = u - ˙ v B = c u v
24 23 neneqd φ u P v P u v c P B - ˙ c = u - ˙ v B = c ¬ u = v
25 22 24 pm2.65da φ u P v P u v c P B - ˙ c = u - ˙ v ¬ B = c
26 25 neqned φ u P v P u v c P B - ˙ c = u - ˙ v B c
27 26 ex φ u P v P u v c P B - ˙ c = u - ˙ v B c
28 27 anim2d φ u P v P u v c P B A I c B - ˙ c = u - ˙ v B A I c B c
29 28 reximdva φ u P v P u v c P B A I c B - ˙ c = u - ˙ v c P B A I c B c
30 13 29 mpd φ u P v P u v c P B A I c B c
31 1 2 3 4 7 tglowdim1 φ u P v P u v
32 30 31 r19.29vva φ c P B A I c B c