| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tgbtwnconn.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 3 |
|
tgbtwnconn.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 4 |
|
tgbtwnconn.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 5 |
|
tgbtwnconn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 6 |
|
tgbtwnconn.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 7 |
|
tgbtwnconn.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 8 |
|
tgbtwnconn3.1 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 9 |
|
tgbtwnconn3.2 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 10 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → 𝐺 ∈ TarskiG ) |
| 12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → 𝐵 ∈ 𝑃 ) |
| 13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → 𝐴 ∈ 𝑃 ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → 𝐶 ∈ 𝑃 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → ( ♯ ‘ 𝑃 ) = 1 ) |
| 16 |
1 10 2 11 12 13 14 15
|
tgldim0itv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 17 |
16
|
orcd |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑃 ) = 1 ) → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 18 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐺 ∈ TarskiG ) |
| 19 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝑝 ∈ 𝑃 ) |
| 20 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ∈ 𝑃 ) |
| 21 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐵 ∈ 𝑃 ) |
| 22 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐶 ∈ 𝑃 ) |
| 23 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ≠ 𝑝 ) |
| 24 |
23
|
necomd |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝑝 ≠ 𝐴 ) |
| 25 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐷 ∈ 𝑃 ) |
| 26 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 27 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ) |
| 28 |
1 10 2 18 25 20 19 27
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ∈ ( 𝑝 𝐼 𝐷 ) ) |
| 29 |
1 10 2 18 21 20 19 25 26 28
|
tgbtwnintr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ∈ ( 𝐵 𝐼 𝑝 ) ) |
| 30 |
1 10 2 18 21 20 19 29
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ∈ ( 𝑝 𝐼 𝐵 ) ) |
| 31 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐷 ) ) |
| 32 |
1 10 2 18 20 22 25 31
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐶 ∈ ( 𝐷 𝐼 𝐴 ) ) |
| 33 |
1 10 2 18 25 22 20 19 32 27
|
tgbtwnexch3 |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ) |
| 34 |
1 10 2 18 22 20 19 33
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ∈ ( 𝑝 𝐼 𝐶 ) ) |
| 35 |
1 2 18 19 20 21 22 24 30 34
|
tgbtwnconn2 |
⊢ ( ( ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 36 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐺 ∈ TarskiG ) |
| 37 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐷 ∈ 𝑃 ) |
| 38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐴 ∈ 𝑃 ) |
| 39 |
|
simpr |
⊢ ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 40 |
1 10 2 36 37 38 39
|
tgbtwndiff |
⊢ ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ∃ 𝑝 ∈ 𝑃 ( 𝐴 ∈ ( 𝐷 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) |
| 41 |
35 40
|
r19.29a |
⊢ ( ( 𝜑 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 42 |
1 4
|
tgldimor |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
| 43 |
17 41 42
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |