| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgbtwnconn.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tgbtwnconn.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | tgbtwnconn.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 4 |  | tgbtwnconn.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | tgbtwnconn.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | tgbtwnconn.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | tgbtwnconn.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 8 |  | tgbtwnconn3.1 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 9 |  | tgbtwnconn3.2 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 10 |  | eqid | ⊢ ( dist ‘ 𝐺 )  =  ( dist ‘ 𝐺 ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  𝐺  ∈  TarskiG ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  𝐵  ∈  𝑃 ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  𝐴  ∈  𝑃 ) | 
						
							| 14 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  𝐶  ∈  𝑃 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  ( ♯ ‘ 𝑃 )  =  1 ) | 
						
							| 16 | 1 10 2 11 12 13 14 15 | tgldim0itv | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 17 | 16 | orcd | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  =  1 )  →  ( 𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 18 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝑝  ∈  𝑃 ) | 
						
							| 20 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 21 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 22 | 6 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 23 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐴  ≠  𝑝 ) | 
						
							| 24 | 23 | necomd | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝑝  ≠  𝐴 ) | 
						
							| 25 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 26 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 27 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐴  ∈  ( 𝐷 𝐼 𝑝 ) ) | 
						
							| 28 | 1 10 2 18 25 20 19 27 | tgbtwncom | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐴  ∈  ( 𝑝 𝐼 𝐷 ) ) | 
						
							| 29 | 1 10 2 18 21 20 19 25 26 28 | tgbtwnintr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐴  ∈  ( 𝐵 𝐼 𝑝 ) ) | 
						
							| 30 | 1 10 2 18 21 20 19 29 | tgbtwncom | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐴  ∈  ( 𝑝 𝐼 𝐵 ) ) | 
						
							| 31 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 32 | 1 10 2 18 20 22 25 31 | tgbtwncom | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐶  ∈  ( 𝐷 𝐼 𝐴 ) ) | 
						
							| 33 | 1 10 2 18 25 22 20 19 32 27 | tgbtwnexch3 | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐴  ∈  ( 𝐶 𝐼 𝑝 ) ) | 
						
							| 34 | 1 10 2 18 22 20 19 33 | tgbtwncom | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  𝐴  ∈  ( 𝑝 𝐼 𝐶 ) ) | 
						
							| 35 | 1 2 18 19 20 21 22 24 30 34 | tgbtwnconn2 | ⊢ ( ( ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) )  →  ( 𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 36 | 3 | adantr | ⊢ ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 37 | 7 | adantr | ⊢ ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐷  ∈  𝑃 ) | 
						
							| 38 | 4 | adantr | ⊢ ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 39 |  | simpr | ⊢ ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 40 | 1 10 2 36 37 38 39 | tgbtwndiff | ⊢ ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ∃ 𝑝  ∈  𝑃 ( 𝐴  ∈  ( 𝐷 𝐼 𝑝 )  ∧  𝐴  ≠  𝑝 ) ) | 
						
							| 41 | 35 40 | r19.29a | ⊢ ( ( 𝜑  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 42 | 1 4 | tgldimor | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑃 )  =  1  ∨  2  ≤  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 43 | 17 41 42 | mpjaodan | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) |