| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgldimor.p |
⊢ 𝑃 = ( 𝐸 ‘ 𝐹 ) |
| 2 |
|
tgldimor.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 3 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
| 4 |
|
hashv01gt1 |
⊢ ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) |
| 6 |
|
3orass |
⊢ ( ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ↔ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ) ) |
| 7 |
5 6
|
mpbi |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ) |
| 8 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 9 |
|
1z |
⊢ 1 ∈ ℤ |
| 10 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
| 11 |
|
zltp1le |
⊢ ( ( 1 ∈ ℤ ∧ ( ♯ ‘ 𝑃 ) ∈ ℤ ) → ( 1 < ( ♯ ‘ 𝑃 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑃 ) ) ) |
| 12 |
9 10 11
|
sylancr |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 1 < ( ♯ ‘ 𝑃 ) ↔ ( 1 + 1 ) ≤ ( ♯ ‘ 𝑃 ) ) ) |
| 13 |
12
|
biimpac |
⊢ ( ( 1 < ( ♯ ‘ 𝑃 ) ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( 1 + 1 ) ≤ ( ♯ ‘ 𝑃 ) ) |
| 14 |
8 13
|
eqbrtrrid |
⊢ ( ( 1 < ( ♯ ‘ 𝑃 ) ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 15 |
|
2re |
⊢ 2 ∈ ℝ |
| 16 |
15
|
rexri |
⊢ 2 ∈ ℝ* |
| 17 |
|
pnfge |
⊢ ( 2 ∈ ℝ* → 2 ≤ +∞ ) |
| 18 |
16 17
|
ax-mp |
⊢ 2 ≤ +∞ |
| 19 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑃 ) = +∞ → ( 2 ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ +∞ ) ) |
| 20 |
18 19
|
mpbiri |
⊢ ( ( ♯ ‘ 𝑃 ) = +∞ → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 1 < ( ♯ ‘ 𝑃 ) ∧ ( ♯ ‘ 𝑃 ) = +∞ ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 22 |
|
hashnn0pnf |
⊢ ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑃 ) = +∞ ) ) |
| 23 |
3 22
|
mp1i |
⊢ ( 1 < ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∨ ( ♯ ‘ 𝑃 ) = +∞ ) ) |
| 24 |
14 21 23
|
mpjaodan |
⊢ ( 1 < ( ♯ ‘ 𝑃 ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 25 |
24
|
orim2i |
⊢ ( ( ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
| 26 |
25
|
orim2i |
⊢ ( ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 1 < ( ♯ ‘ 𝑃 ) ) ) → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) ) |
| 27 |
7 26
|
mp1i |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) ) |
| 28 |
|
ne0i |
⊢ ( 𝐴 ∈ 𝑃 → 𝑃 ≠ ∅ ) |
| 29 |
|
hasheq0 |
⊢ ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) = 0 ↔ 𝑃 = ∅ ) ) |
| 30 |
3 29
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 ↔ 𝑃 = ∅ ) |
| 31 |
30
|
biimpi |
⊢ ( ( ♯ ‘ 𝑃 ) = 0 → 𝑃 = ∅ ) |
| 32 |
31
|
necon3ai |
⊢ ( 𝑃 ≠ ∅ → ¬ ( ♯ ‘ 𝑃 ) = 0 ) |
| 33 |
|
biorf |
⊢ ( ¬ ( ♯ ‘ 𝑃 ) = 0 → ( ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ↔ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) ) ) |
| 34 |
2 28 32 33
|
4syl |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ↔ ( ( ♯ ‘ 𝑃 ) = 0 ∨ ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) ) ) |
| 35 |
27 34
|
mpbird |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑃 ) = 1 ∨ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |