Metamath Proof Explorer


Theorem tgldim0eq

Description: In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 11-Apr-2019)

Ref Expression
Hypotheses tgldim0.g 𝑃 = ( 𝐸𝐹 )
tgldim0.p ( 𝜑 → ( ♯ ‘ 𝑃 ) = 1 )
tgldim0.a ( 𝜑𝐴𝑃 )
tgldim0.b ( 𝜑𝐵𝑃 )
Assertion tgldim0eq ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 tgldim0.g 𝑃 = ( 𝐸𝐹 )
2 tgldim0.p ( 𝜑 → ( ♯ ‘ 𝑃 ) = 1 )
3 tgldim0.a ( 𝜑𝐴𝑃 )
4 tgldim0.b ( 𝜑𝐵𝑃 )
5 1 fvexi 𝑃 ∈ V
6 hash1snb ( 𝑃 ∈ V → ( ( ♯ ‘ 𝑃 ) = 1 ↔ ∃ 𝑥 𝑃 = { 𝑥 } ) )
7 5 6 ax-mp ( ( ♯ ‘ 𝑃 ) = 1 ↔ ∃ 𝑥 𝑃 = { 𝑥 } )
8 2 7 sylib ( 𝜑 → ∃ 𝑥 𝑃 = { 𝑥 } )
9 3 adantr ( ( 𝜑𝑃 = { 𝑥 } ) → 𝐴𝑃 )
10 simpr ( ( 𝜑𝑃 = { 𝑥 } ) → 𝑃 = { 𝑥 } )
11 9 10 eleqtrd ( ( 𝜑𝑃 = { 𝑥 } ) → 𝐴 ∈ { 𝑥 } )
12 elsni ( 𝐴 ∈ { 𝑥 } → 𝐴 = 𝑥 )
13 11 12 syl ( ( 𝜑𝑃 = { 𝑥 } ) → 𝐴 = 𝑥 )
14 4 adantr ( ( 𝜑𝑃 = { 𝑥 } ) → 𝐵𝑃 )
15 14 10 eleqtrd ( ( 𝜑𝑃 = { 𝑥 } ) → 𝐵 ∈ { 𝑥 } )
16 elsni ( 𝐵 ∈ { 𝑥 } → 𝐵 = 𝑥 )
17 15 16 syl ( ( 𝜑𝑃 = { 𝑥 } ) → 𝐵 = 𝑥 )
18 13 17 eqtr4d ( ( 𝜑𝑃 = { 𝑥 } ) → 𝐴 = 𝐵 )
19 8 18 exlimddv ( 𝜑𝐴 = 𝐵 )