| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgldim0.g | ⊢ 𝑃  =  ( 𝐸 ‘ 𝐹 ) | 
						
							| 2 |  | tgldim0.p | ⊢ ( 𝜑  →  ( ♯ ‘ 𝑃 )  =  1 ) | 
						
							| 3 |  | tgldim0.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 4 |  | tgldim0.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 5 | 1 | fvexi | ⊢ 𝑃  ∈  V | 
						
							| 6 |  | hash1snb | ⊢ ( 𝑃  ∈  V  →  ( ( ♯ ‘ 𝑃 )  =  1  ↔  ∃ 𝑥 𝑃  =  { 𝑥 } ) ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ( ♯ ‘ 𝑃 )  =  1  ↔  ∃ 𝑥 𝑃  =  { 𝑥 } ) | 
						
							| 8 | 2 7 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥 𝑃  =  { 𝑥 } ) | 
						
							| 9 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  =  { 𝑥 } )  →  𝐴  ∈  𝑃 ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑃  =  { 𝑥 } )  →  𝑃  =  { 𝑥 } ) | 
						
							| 11 | 9 10 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑃  =  { 𝑥 } )  →  𝐴  ∈  { 𝑥 } ) | 
						
							| 12 |  | elsni | ⊢ ( 𝐴  ∈  { 𝑥 }  →  𝐴  =  𝑥 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝜑  ∧  𝑃  =  { 𝑥 } )  →  𝐴  =  𝑥 ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑃  =  { 𝑥 } )  →  𝐵  ∈  𝑃 ) | 
						
							| 15 | 14 10 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑃  =  { 𝑥 } )  →  𝐵  ∈  { 𝑥 } ) | 
						
							| 16 |  | elsni | ⊢ ( 𝐵  ∈  { 𝑥 }  →  𝐵  =  𝑥 ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝜑  ∧  𝑃  =  { 𝑥 } )  →  𝐵  =  𝑥 ) | 
						
							| 18 | 13 17 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑃  =  { 𝑥 } )  →  𝐴  =  𝐵 ) | 
						
							| 19 | 8 18 | exlimddv | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |