| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgldim0.g |  |-  P = ( E ` F ) | 
						
							| 2 |  | tgldim0.p |  |-  ( ph -> ( # ` P ) = 1 ) | 
						
							| 3 |  | tgldim0.a |  |-  ( ph -> A e. P ) | 
						
							| 4 |  | tgldim0.b |  |-  ( ph -> B e. P ) | 
						
							| 5 | 1 | fvexi |  |-  P e. _V | 
						
							| 6 |  | hash1snb |  |-  ( P e. _V -> ( ( # ` P ) = 1 <-> E. x P = { x } ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( ( # ` P ) = 1 <-> E. x P = { x } ) | 
						
							| 8 | 2 7 | sylib |  |-  ( ph -> E. x P = { x } ) | 
						
							| 9 | 3 | adantr |  |-  ( ( ph /\ P = { x } ) -> A e. P ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ P = { x } ) -> P = { x } ) | 
						
							| 11 | 9 10 | eleqtrd |  |-  ( ( ph /\ P = { x } ) -> A e. { x } ) | 
						
							| 12 |  | elsni |  |-  ( A e. { x } -> A = x ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( ph /\ P = { x } ) -> A = x ) | 
						
							| 14 | 4 | adantr |  |-  ( ( ph /\ P = { x } ) -> B e. P ) | 
						
							| 15 | 14 10 | eleqtrd |  |-  ( ( ph /\ P = { x } ) -> B e. { x } ) | 
						
							| 16 |  | elsni |  |-  ( B e. { x } -> B = x ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( ph /\ P = { x } ) -> B = x ) | 
						
							| 18 | 13 17 | eqtr4d |  |-  ( ( ph /\ P = { x } ) -> A = B ) | 
						
							| 19 | 8 18 | exlimddv |  |-  ( ph -> A = B ) |