Metamath Proof Explorer


Theorem tgldim0itv

Description: In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 12-Apr-2019)

Ref Expression
Hypotheses tgbtwndiff.p
|- P = ( Base ` G )
tgbtwndiff.d
|- .- = ( dist ` G )
tgbtwndiff.i
|- I = ( Itv ` G )
tgbtwndiff.g
|- ( ph -> G e. TarskiG )
tgbtwndiff.a
|- ( ph -> A e. P )
tgbtwndiff.b
|- ( ph -> B e. P )
tgldim0itv.c
|- ( ph -> C e. P )
tgldim0itv.p
|- ( ph -> ( # ` P ) = 1 )
Assertion tgldim0itv
|- ( ph -> A e. ( B I C ) )

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p
 |-  P = ( Base ` G )
2 tgbtwndiff.d
 |-  .- = ( dist ` G )
3 tgbtwndiff.i
 |-  I = ( Itv ` G )
4 tgbtwndiff.g
 |-  ( ph -> G e. TarskiG )
5 tgbtwndiff.a
 |-  ( ph -> A e. P )
6 tgbtwndiff.b
 |-  ( ph -> B e. P )
7 tgldim0itv.c
 |-  ( ph -> C e. P )
8 tgldim0itv.p
 |-  ( ph -> ( # ` P ) = 1 )
9 1 8 5 6 tgldim0eq
 |-  ( ph -> A = B )
10 1 2 3 4 6 7 tgbtwntriv1
 |-  ( ph -> B e. ( B I C ) )
11 9 10 eqeltrd
 |-  ( ph -> A e. ( B I C ) )