Description: In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 12-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tgbtwndiff.p | |- P = ( Base ` G ) |
|
tgbtwndiff.d | |- .- = ( dist ` G ) |
||
tgbtwndiff.i | |- I = ( Itv ` G ) |
||
tgbtwndiff.g | |- ( ph -> G e. TarskiG ) |
||
tgbtwndiff.a | |- ( ph -> A e. P ) |
||
tgbtwndiff.b | |- ( ph -> B e. P ) |
||
tgldim0itv.c | |- ( ph -> C e. P ) |
||
tgldim0itv.p | |- ( ph -> ( # ` P ) = 1 ) |
||
Assertion | tgldim0itv | |- ( ph -> A e. ( B I C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgbtwndiff.p | |- P = ( Base ` G ) |
|
2 | tgbtwndiff.d | |- .- = ( dist ` G ) |
|
3 | tgbtwndiff.i | |- I = ( Itv ` G ) |
|
4 | tgbtwndiff.g | |- ( ph -> G e. TarskiG ) |
|
5 | tgbtwndiff.a | |- ( ph -> A e. P ) |
|
6 | tgbtwndiff.b | |- ( ph -> B e. P ) |
|
7 | tgldim0itv.c | |- ( ph -> C e. P ) |
|
8 | tgldim0itv.p | |- ( ph -> ( # ` P ) = 1 ) |
|
9 | 1 8 5 6 | tgldim0eq | |- ( ph -> A = B ) |
10 | 1 2 3 4 6 7 | tgbtwntriv1 | |- ( ph -> B e. ( B I C ) ) |
11 | 9 10 | eqeltrd | |- ( ph -> A e. ( B I C ) ) |