Metamath Proof Explorer


Theorem tgldim0itv

Description: In dimension zero, any two points are equal. (Contributed by Thierry Arnoux, 12-Apr-2019)

Ref Expression
Hypotheses tgbtwndiff.p P=BaseG
tgbtwndiff.d -˙=distG
tgbtwndiff.i I=ItvG
tgbtwndiff.g φG𝒢Tarski
tgbtwndiff.a φAP
tgbtwndiff.b φBP
tgldim0itv.c φCP
tgldim0itv.p φP=1
Assertion tgldim0itv φABIC

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p P=BaseG
2 tgbtwndiff.d -˙=distG
3 tgbtwndiff.i I=ItvG
4 tgbtwndiff.g φG𝒢Tarski
5 tgbtwndiff.a φAP
6 tgbtwndiff.b φBP
7 tgldim0itv.c φCP
8 tgldim0itv.p φP=1
9 1 8 5 6 tgldim0eq φA=B
10 1 2 3 4 6 7 tgbtwntriv1 φBBIC
11 9 10 eqeltrd φABIC