Metamath Proof Explorer
Description: In dimension zero, any two points are equal. (Contributed by Thierry
Arnoux, 12-Apr-2019)
|
|
Ref |
Expression |
|
Hypotheses |
tgbtwndiff.p |
|
|
|
tgbtwndiff.d |
|
|
|
tgbtwndiff.i |
|
|
|
tgbtwndiff.g |
|
|
|
tgbtwndiff.a |
|
|
|
tgbtwndiff.b |
|
|
|
tgldim0itv.c |
|
|
|
tgldim0itv.p |
|
|
Assertion |
tgldim0itv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwndiff.p |
|
| 2 |
|
tgbtwndiff.d |
|
| 3 |
|
tgbtwndiff.i |
|
| 4 |
|
tgbtwndiff.g |
|
| 5 |
|
tgbtwndiff.a |
|
| 6 |
|
tgbtwndiff.b |
|
| 7 |
|
tgldim0itv.c |
|
| 8 |
|
tgldim0itv.p |
|
| 9 |
1 8 5 6
|
tgldim0eq |
|
| 10 |
1 2 3 4 6 7
|
tgbtwntriv1 |
|
| 11 |
9 10
|
eqeltrd |
|