Metamath Proof Explorer


Theorem tgldim0cgr

Description: In dimension zero, any two pairs of points are congruent. (Contributed by Thierry Arnoux, 12-Apr-2019)

Ref Expression
Hypotheses tgbtwndiff.p P=BaseG
tgbtwndiff.d -˙=distG
tgbtwndiff.i I=ItvG
tgbtwndiff.g φG𝒢Tarski
tgbtwndiff.a φAP
tgbtwndiff.b φBP
tgldim0itv.c φCP
tgldim0itv.p φP=1
tgldim0itv.d φDP
Assertion tgldim0cgr φA-˙B=C-˙D

Proof

Step Hyp Ref Expression
1 tgbtwndiff.p P=BaseG
2 tgbtwndiff.d -˙=distG
3 tgbtwndiff.i I=ItvG
4 tgbtwndiff.g φG𝒢Tarski
5 tgbtwndiff.a φAP
6 tgbtwndiff.b φBP
7 tgldim0itv.c φCP
8 tgldim0itv.p φP=1
9 tgldim0itv.d φDP
10 1 8 5 7 tgldim0eq φA=C
11 1 8 6 9 tgldim0eq φB=D
12 10 11 oveq12d φA-˙B=C-˙D