| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgbtwnconn.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | tgbtwnconn.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 3 |  | tgbtwnconn.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 4 |  | tgbtwnconn.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑃 ) | 
						
							| 5 |  | tgbtwnconn.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑃 ) | 
						
							| 6 |  | tgbtwnconn.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑃 ) | 
						
							| 7 |  | tgbtwnconn.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑃 ) | 
						
							| 8 |  | tgbtwnconn3.1 | ⊢ ( 𝜑  →  𝐵  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 9 |  | tgbtwnconn3.2 | ⊢ ( 𝜑  →  𝐶  ∈  ( 𝐴 𝐼 𝐷 ) ) | 
						
							| 10 |  | tgbtwnconnln3.l | ⊢ 𝐿  =  ( LineG ‘ 𝐺 ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 12 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 13 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 14 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) ) | 
						
							| 16 | 1 10 2 11 12 13 14 15 | btwncolg1 | ⊢ ( ( 𝜑  ∧  𝐵  ∈  ( 𝐴 𝐼 𝐶 ) )  →  ( 𝐵  ∈  ( 𝐴 𝐿 𝐶 )  ∨  𝐴  =  𝐶 ) ) | 
						
							| 17 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐺  ∈  TarskiG ) | 
						
							| 18 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐴  ∈  𝑃 ) | 
						
							| 19 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  𝑃 ) | 
						
							| 20 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐵  ∈  𝑃 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) | 
						
							| 22 | 1 10 2 17 18 19 20 21 | btwncolg3 | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) )  →  ( 𝐵  ∈  ( 𝐴 𝐿 𝐶 )  ∨  𝐴  =  𝐶 ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 | tgbtwnconn3 | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐴 𝐼 𝐶 )  ∨  𝐶  ∈  ( 𝐴 𝐼 𝐵 ) ) ) | 
						
							| 24 | 16 22 23 | mpjaodan | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( 𝐴 𝐿 𝐶 )  ∨  𝐴  =  𝐶 ) ) |