Metamath Proof Explorer


Theorem tgbtwnconnln3

Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p 𝑃 = ( Base ‘ 𝐺 )
tgbtwnconn.i 𝐼 = ( Itv ‘ 𝐺 )
tgbtwnconn.g ( 𝜑𝐺 ∈ TarskiG )
tgbtwnconn.a ( 𝜑𝐴𝑃 )
tgbtwnconn.b ( 𝜑𝐵𝑃 )
tgbtwnconn.c ( 𝜑𝐶𝑃 )
tgbtwnconn.d ( 𝜑𝐷𝑃 )
tgbtwnconn3.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
tgbtwnconn3.2 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )
tgbtwnconnln3.l 𝐿 = ( LineG ‘ 𝐺 )
Assertion tgbtwnconnln3 ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p 𝑃 = ( Base ‘ 𝐺 )
2 tgbtwnconn.i 𝐼 = ( Itv ‘ 𝐺 )
3 tgbtwnconn.g ( 𝜑𝐺 ∈ TarskiG )
4 tgbtwnconn.a ( 𝜑𝐴𝑃 )
5 tgbtwnconn.b ( 𝜑𝐵𝑃 )
6 tgbtwnconn.c ( 𝜑𝐶𝑃 )
7 tgbtwnconn.d ( 𝜑𝐷𝑃 )
8 tgbtwnconn3.1 ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐷 ) )
9 tgbtwnconn3.2 ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐷 ) )
10 tgbtwnconnln3.l 𝐿 = ( LineG ‘ 𝐺 )
11 3 adantr ( ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG )
12 4 adantr ( ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐴𝑃 )
13 6 adantr ( ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐶𝑃 )
14 5 adantr ( ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵𝑃 )
15 simpr ( ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) )
16 1 10 2 11 12 13 14 15 btwncolg1 ( ( 𝜑𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) )
17 3 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG )
18 4 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴𝑃 )
19 6 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶𝑃 )
20 5 adantr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵𝑃 )
21 simpr ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) )
22 1 10 2 17 18 19 20 21 btwncolg3 ( ( 𝜑𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) )
23 1 2 3 4 5 6 7 8 9 tgbtwnconn3 ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) )
24 16 22 23 mpjaodan ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) )