Metamath Proof Explorer


Theorem tgbtwnconnln3

Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p
|- P = ( Base ` G )
tgbtwnconn.i
|- I = ( Itv ` G )
tgbtwnconn.g
|- ( ph -> G e. TarskiG )
tgbtwnconn.a
|- ( ph -> A e. P )
tgbtwnconn.b
|- ( ph -> B e. P )
tgbtwnconn.c
|- ( ph -> C e. P )
tgbtwnconn.d
|- ( ph -> D e. P )
tgbtwnconn3.1
|- ( ph -> B e. ( A I D ) )
tgbtwnconn3.2
|- ( ph -> C e. ( A I D ) )
tgbtwnconnln3.l
|- L = ( LineG ` G )
Assertion tgbtwnconnln3
|- ( ph -> ( B e. ( A L C ) \/ A = C ) )

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p
 |-  P = ( Base ` G )
2 tgbtwnconn.i
 |-  I = ( Itv ` G )
3 tgbtwnconn.g
 |-  ( ph -> G e. TarskiG )
4 tgbtwnconn.a
 |-  ( ph -> A e. P )
5 tgbtwnconn.b
 |-  ( ph -> B e. P )
6 tgbtwnconn.c
 |-  ( ph -> C e. P )
7 tgbtwnconn.d
 |-  ( ph -> D e. P )
8 tgbtwnconn3.1
 |-  ( ph -> B e. ( A I D ) )
9 tgbtwnconn3.2
 |-  ( ph -> C e. ( A I D ) )
10 tgbtwnconnln3.l
 |-  L = ( LineG ` G )
11 3 adantr
 |-  ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG )
12 4 adantr
 |-  ( ( ph /\ B e. ( A I C ) ) -> A e. P )
13 6 adantr
 |-  ( ( ph /\ B e. ( A I C ) ) -> C e. P )
14 5 adantr
 |-  ( ( ph /\ B e. ( A I C ) ) -> B e. P )
15 simpr
 |-  ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) )
16 1 10 2 11 12 13 14 15 btwncolg1
 |-  ( ( ph /\ B e. ( A I C ) ) -> ( B e. ( A L C ) \/ A = C ) )
17 3 adantr
 |-  ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG )
18 4 adantr
 |-  ( ( ph /\ C e. ( A I B ) ) -> A e. P )
19 6 adantr
 |-  ( ( ph /\ C e. ( A I B ) ) -> C e. P )
20 5 adantr
 |-  ( ( ph /\ C e. ( A I B ) ) -> B e. P )
21 simpr
 |-  ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) )
22 1 10 2 17 18 19 20 21 btwncolg3
 |-  ( ( ph /\ C e. ( A I B ) ) -> ( B e. ( A L C ) \/ A = C ) )
23 1 2 3 4 5 6 7 8 9 tgbtwnconn3
 |-  ( ph -> ( B e. ( A I C ) \/ C e. ( A I B ) ) )
24 16 22 23 mpjaodan
 |-  ( ph -> ( B e. ( A L C ) \/ A = C ) )