| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tgbtwnconn.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | tgbtwnconn.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | tgbtwnconn.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 4 |  | tgbtwnconn.a |  |-  ( ph -> A e. P ) | 
						
							| 5 |  | tgbtwnconn.b |  |-  ( ph -> B e. P ) | 
						
							| 6 |  | tgbtwnconn.c |  |-  ( ph -> C e. P ) | 
						
							| 7 |  | tgbtwnconn.d |  |-  ( ph -> D e. P ) | 
						
							| 8 |  | tgbtwnconn3.1 |  |-  ( ph -> B e. ( A I D ) ) | 
						
							| 9 |  | tgbtwnconn3.2 |  |-  ( ph -> C e. ( A I D ) ) | 
						
							| 10 |  | tgbtwnconnln3.l |  |-  L = ( LineG ` G ) | 
						
							| 11 | 3 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) | 
						
							| 12 | 4 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> A e. P ) | 
						
							| 13 | 6 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> C e. P ) | 
						
							| 14 | 5 | adantr |  |-  ( ( ph /\ B e. ( A I C ) ) -> B e. P ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) | 
						
							| 16 | 1 10 2 11 12 13 14 15 | btwncolg1 |  |-  ( ( ph /\ B e. ( A I C ) ) -> ( B e. ( A L C ) \/ A = C ) ) | 
						
							| 17 | 3 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG ) | 
						
							| 18 | 4 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> A e. P ) | 
						
							| 19 | 6 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> C e. P ) | 
						
							| 20 | 5 | adantr |  |-  ( ( ph /\ C e. ( A I B ) ) -> B e. P ) | 
						
							| 21 |  | simpr |  |-  ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) ) | 
						
							| 22 | 1 10 2 17 18 19 20 21 | btwncolg3 |  |-  ( ( ph /\ C e. ( A I B ) ) -> ( B e. ( A L C ) \/ A = C ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 | tgbtwnconn3 |  |-  ( ph -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) | 
						
							| 24 | 16 22 23 | mpjaodan |  |-  ( ph -> ( B e. ( A L C ) \/ A = C ) ) |