Step |
Hyp |
Ref |
Expression |
1 |
|
tgbtwnconn.p |
|- P = ( Base ` G ) |
2 |
|
tgbtwnconn.i |
|- I = ( Itv ` G ) |
3 |
|
tgbtwnconn.g |
|- ( ph -> G e. TarskiG ) |
4 |
|
tgbtwnconn.a |
|- ( ph -> A e. P ) |
5 |
|
tgbtwnconn.b |
|- ( ph -> B e. P ) |
6 |
|
tgbtwnconn.c |
|- ( ph -> C e. P ) |
7 |
|
tgbtwnconn.d |
|- ( ph -> D e. P ) |
8 |
|
tgbtwnconn3.1 |
|- ( ph -> B e. ( A I D ) ) |
9 |
|
tgbtwnconn3.2 |
|- ( ph -> C e. ( A I D ) ) |
10 |
|
tgbtwnconnln3.l |
|- L = ( LineG ` G ) |
11 |
3
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) |
12 |
4
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> A e. P ) |
13 |
6
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> C e. P ) |
14 |
5
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. P ) |
15 |
|
simpr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) |
16 |
1 10 2 11 12 13 14 15
|
btwncolg1 |
|- ( ( ph /\ B e. ( A I C ) ) -> ( B e. ( A L C ) \/ A = C ) ) |
17 |
3
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG ) |
18 |
4
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> A e. P ) |
19 |
6
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. P ) |
20 |
5
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> B e. P ) |
21 |
|
simpr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) ) |
22 |
1 10 2 17 18 19 20 21
|
btwncolg3 |
|- ( ( ph /\ C e. ( A I B ) ) -> ( B e. ( A L C ) \/ A = C ) ) |
23 |
1 2 3 4 5 6 7 8 9
|
tgbtwnconn3 |
|- ( ph -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |
24 |
16 22 23
|
mpjaodan |
|- ( ph -> ( B e. ( A L C ) \/ A = C ) ) |