| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgbtwnconn.p |
|- P = ( Base ` G ) |
| 2 |
|
tgbtwnconn.i |
|- I = ( Itv ` G ) |
| 3 |
|
tgbtwnconn.g |
|- ( ph -> G e. TarskiG ) |
| 4 |
|
tgbtwnconn.a |
|- ( ph -> A e. P ) |
| 5 |
|
tgbtwnconn.b |
|- ( ph -> B e. P ) |
| 6 |
|
tgbtwnconn.c |
|- ( ph -> C e. P ) |
| 7 |
|
tgbtwnconn.d |
|- ( ph -> D e. P ) |
| 8 |
|
tgbtwnconn22.e |
|- ( ph -> E e. P ) |
| 9 |
|
tgbtwnconn22.1 |
|- ( ph -> A =/= B ) |
| 10 |
|
tgbtwnconn22.2 |
|- ( ph -> C =/= B ) |
| 11 |
|
tgbtwnconn22.3 |
|- ( ph -> B e. ( A I C ) ) |
| 12 |
|
tgbtwnconn22.4 |
|- ( ph -> B e. ( A I D ) ) |
| 13 |
|
tgbtwnconn22.5 |
|- ( ph -> B e. ( C I E ) ) |
| 14 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 15 |
3
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> G e. TarskiG ) |
| 16 |
7
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> D e. P ) |
| 17 |
6
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> C e. P ) |
| 18 |
5
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> B e. P ) |
| 19 |
8
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> E e. P ) |
| 20 |
10
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> C =/= B ) |
| 21 |
|
simpr |
|- ( ( ph /\ C e. ( B I D ) ) -> C e. ( B I D ) ) |
| 22 |
1 14 2 15 18 17 16 21
|
tgbtwncom |
|- ( ( ph /\ C e. ( B I D ) ) -> C e. ( D I B ) ) |
| 23 |
13
|
adantr |
|- ( ( ph /\ C e. ( B I D ) ) -> B e. ( C I E ) ) |
| 24 |
1 14 2 15 16 17 18 19 20 22 23
|
tgbtwnouttr2 |
|- ( ( ph /\ C e. ( B I D ) ) -> B e. ( D I E ) ) |
| 25 |
3
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> G e. TarskiG ) |
| 26 |
7
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> D e. P ) |
| 27 |
5
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. P ) |
| 28 |
8
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> E e. P ) |
| 29 |
6
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> C e. P ) |
| 30 |
|
simpr |
|- ( ( ph /\ D e. ( B I C ) ) -> D e. ( B I C ) ) |
| 31 |
13
|
adantr |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. ( C I E ) ) |
| 32 |
1 14 2 25 29 27 28 31
|
tgbtwncom |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. ( E I C ) ) |
| 33 |
1 14 2 25 26 27 28 29 30 32
|
tgbtwnintr |
|- ( ( ph /\ D e. ( B I C ) ) -> B e. ( D I E ) ) |
| 34 |
1 2 3 4 5 6 7 9 11 12
|
tgbtwnconn2 |
|- ( ph -> ( C e. ( B I D ) \/ D e. ( B I C ) ) ) |
| 35 |
24 33 34
|
mpjaodan |
|- ( ph -> B e. ( D I E ) ) |