| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishlg.p |
|- P = ( Base ` G ) |
| 2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
| 3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
| 4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
| 5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
| 6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
| 7 |
|
hlln.1 |
|- ( ph -> G e. TarskiG ) |
| 8 |
|
hltr.d |
|- ( ph -> D e. P ) |
| 9 |
|
hlbtwn.1 |
|- ( ph -> D e. ( C I B ) ) |
| 10 |
|
hlbtwn.2 |
|- ( ph -> B =/= C ) |
| 11 |
|
hlbtwn.3 |
|- ( ph -> D =/= C ) |
| 12 |
10 11
|
2thd |
|- ( ph -> ( B =/= C <-> D =/= C ) ) |
| 13 |
7
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> G e. TarskiG ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> C e. P ) |
| 15 |
4
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. P ) |
| 16 |
8
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> D e. P ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> B e. P ) |
| 18 |
|
simpr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) |
| 19 |
9
|
adantr |
|- ( ( ph /\ A e. ( C I B ) ) -> D e. ( C I B ) ) |
| 20 |
1 2 13 14 15 16 17 18 19
|
tgbtwnconn3 |
|- ( ( ph /\ A e. ( C I B ) ) -> ( A e. ( C I D ) \/ D e. ( C I A ) ) ) |
| 21 |
|
eqid |
|- ( dist ` G ) = ( dist ` G ) |
| 22 |
7
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG ) |
| 23 |
6
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> C e. P ) |
| 24 |
8
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> D e. P ) |
| 25 |
5
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. P ) |
| 26 |
4
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. P ) |
| 27 |
9
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> D e. ( C I B ) ) |
| 28 |
|
simpr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) ) |
| 29 |
1 21 2 22 23 24 25 26 27 28
|
tgbtwnexch |
|- ( ( ph /\ B e. ( C I A ) ) -> D e. ( C I A ) ) |
| 30 |
29
|
olcd |
|- ( ( ph /\ B e. ( C I A ) ) -> ( A e. ( C I D ) \/ D e. ( C I A ) ) ) |
| 31 |
20 30
|
jaodan |
|- ( ( ph /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) -> ( A e. ( C I D ) \/ D e. ( C I A ) ) ) |
| 32 |
7
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> G e. TarskiG ) |
| 33 |
6
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> C e. P ) |
| 34 |
4
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> A e. P ) |
| 35 |
8
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> D e. P ) |
| 36 |
5
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> B e. P ) |
| 37 |
|
simpr |
|- ( ( ph /\ A e. ( C I D ) ) -> A e. ( C I D ) ) |
| 38 |
9
|
adantr |
|- ( ( ph /\ A e. ( C I D ) ) -> D e. ( C I B ) ) |
| 39 |
1 21 2 32 33 34 35 36 37 38
|
tgbtwnexch |
|- ( ( ph /\ A e. ( C I D ) ) -> A e. ( C I B ) ) |
| 40 |
39
|
orcd |
|- ( ( ph /\ A e. ( C I D ) ) -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
| 41 |
7
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> G e. TarskiG ) |
| 42 |
6
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> C e. P ) |
| 43 |
8
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> D e. P ) |
| 44 |
4
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> A e. P ) |
| 45 |
5
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> B e. P ) |
| 46 |
11
|
necomd |
|- ( ph -> C =/= D ) |
| 47 |
46
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> C =/= D ) |
| 48 |
|
simpr |
|- ( ( ph /\ D e. ( C I A ) ) -> D e. ( C I A ) ) |
| 49 |
9
|
adantr |
|- ( ( ph /\ D e. ( C I A ) ) -> D e. ( C I B ) ) |
| 50 |
1 2 41 42 43 44 45 47 48 49
|
tgbtwnconn1 |
|- ( ( ph /\ D e. ( C I A ) ) -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
| 51 |
40 50
|
jaodan |
|- ( ( ph /\ ( A e. ( C I D ) \/ D e. ( C I A ) ) ) -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
| 52 |
31 51
|
impbida |
|- ( ph -> ( ( A e. ( C I B ) \/ B e. ( C I A ) ) <-> ( A e. ( C I D ) \/ D e. ( C I A ) ) ) ) |
| 53 |
12 52
|
3anbi23d |
|- ( ph -> ( ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( A =/= C /\ D =/= C /\ ( A e. ( C I D ) \/ D e. ( C I A ) ) ) ) ) |
| 54 |
1 2 3 4 5 6 7
|
ishlg |
|- ( ph -> ( A ( K ` C ) B <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) |
| 55 |
1 2 3 4 8 6 7
|
ishlg |
|- ( ph -> ( A ( K ` C ) D <-> ( A =/= C /\ D =/= C /\ ( A e. ( C I D ) \/ D e. ( C I A ) ) ) ) ) |
| 56 |
53 54 55
|
3bitr4d |
|- ( ph -> ( A ( K ` C ) B <-> A ( K ` C ) D ) ) |