| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccgra |
|- cgrA |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
|
vb |
|- b |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- g |
| 7 |
6 5
|
cfv |
|- ( Base ` g ) |
| 8 |
|
vp |
|- p |
| 9 |
|
chlg |
|- hlG |
| 10 |
6 9
|
cfv |
|- ( hlG ` g ) |
| 11 |
|
vk |
|- k |
| 12 |
3
|
cv |
|- a |
| 13 |
8
|
cv |
|- p |
| 14 |
|
cmap |
|- ^m |
| 15 |
|
cc0 |
|- 0 |
| 16 |
|
cfzo |
|- ..^ |
| 17 |
|
c3 |
|- 3 |
| 18 |
15 17 16
|
co |
|- ( 0 ..^ 3 ) |
| 19 |
13 18 14
|
co |
|- ( p ^m ( 0 ..^ 3 ) ) |
| 20 |
12 19
|
wcel |
|- a e. ( p ^m ( 0 ..^ 3 ) ) |
| 21 |
4
|
cv |
|- b |
| 22 |
21 19
|
wcel |
|- b e. ( p ^m ( 0 ..^ 3 ) ) |
| 23 |
20 22
|
wa |
|- ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) |
| 24 |
|
vx |
|- x |
| 25 |
|
vy |
|- y |
| 26 |
|
ccgrg |
|- cgrG |
| 27 |
6 26
|
cfv |
|- ( cgrG ` g ) |
| 28 |
24
|
cv |
|- x |
| 29 |
|
c1 |
|- 1 |
| 30 |
29 21
|
cfv |
|- ( b ` 1 ) |
| 31 |
25
|
cv |
|- y |
| 32 |
28 30 31
|
cs3 |
|- <" x ( b ` 1 ) y "> |
| 33 |
12 32 27
|
wbr |
|- a ( cgrG ` g ) <" x ( b ` 1 ) y "> |
| 34 |
11
|
cv |
|- k |
| 35 |
30 34
|
cfv |
|- ( k ` ( b ` 1 ) ) |
| 36 |
15 21
|
cfv |
|- ( b ` 0 ) |
| 37 |
28 36 35
|
wbr |
|- x ( k ` ( b ` 1 ) ) ( b ` 0 ) |
| 38 |
|
c2 |
|- 2 |
| 39 |
38 21
|
cfv |
|- ( b ` 2 ) |
| 40 |
31 39 35
|
wbr |
|- y ( k ` ( b ` 1 ) ) ( b ` 2 ) |
| 41 |
33 37 40
|
w3a |
|- ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) |
| 42 |
41 25 13
|
wrex |
|- E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) |
| 43 |
42 24 13
|
wrex |
|- E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) |
| 44 |
23 43
|
wa |
|- ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) |
| 45 |
44 11 10
|
wsbc |
|- [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) |
| 46 |
45 8 7
|
wsbc |
|- [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) |
| 47 |
46 3 4
|
copab |
|- { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } |
| 48 |
1 2 47
|
cmpt |
|- ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
| 49 |
0 48
|
wceq |
|- cgrA = ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |