| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccgra |  |-  cgrA | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | va |  |-  a | 
						
							| 4 |  | vb |  |-  b | 
						
							| 5 |  | cbs |  |-  Base | 
						
							| 6 | 1 | cv |  |-  g | 
						
							| 7 | 6 5 | cfv |  |-  ( Base ` g ) | 
						
							| 8 |  | vp |  |-  p | 
						
							| 9 |  | chlg |  |-  hlG | 
						
							| 10 | 6 9 | cfv |  |-  ( hlG ` g ) | 
						
							| 11 |  | vk |  |-  k | 
						
							| 12 | 3 | cv |  |-  a | 
						
							| 13 | 8 | cv |  |-  p | 
						
							| 14 |  | cmap |  |-  ^m | 
						
							| 15 |  | cc0 |  |-  0 | 
						
							| 16 |  | cfzo |  |-  ..^ | 
						
							| 17 |  | c3 |  |-  3 | 
						
							| 18 | 15 17 16 | co |  |-  ( 0 ..^ 3 ) | 
						
							| 19 | 13 18 14 | co |  |-  ( p ^m ( 0 ..^ 3 ) ) | 
						
							| 20 | 12 19 | wcel |  |-  a e. ( p ^m ( 0 ..^ 3 ) ) | 
						
							| 21 | 4 | cv |  |-  b | 
						
							| 22 | 21 19 | wcel |  |-  b e. ( p ^m ( 0 ..^ 3 ) ) | 
						
							| 23 | 20 22 | wa |  |-  ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) | 
						
							| 24 |  | vx |  |-  x | 
						
							| 25 |  | vy |  |-  y | 
						
							| 26 |  | ccgrg |  |-  cgrG | 
						
							| 27 | 6 26 | cfv |  |-  ( cgrG ` g ) | 
						
							| 28 | 24 | cv |  |-  x | 
						
							| 29 |  | c1 |  |-  1 | 
						
							| 30 | 29 21 | cfv |  |-  ( b ` 1 ) | 
						
							| 31 | 25 | cv |  |-  y | 
						
							| 32 | 28 30 31 | cs3 |  |-  <" x ( b ` 1 ) y "> | 
						
							| 33 | 12 32 27 | wbr |  |-  a ( cgrG ` g ) <" x ( b ` 1 ) y "> | 
						
							| 34 | 11 | cv |  |-  k | 
						
							| 35 | 30 34 | cfv |  |-  ( k ` ( b ` 1 ) ) | 
						
							| 36 | 15 21 | cfv |  |-  ( b ` 0 ) | 
						
							| 37 | 28 36 35 | wbr |  |-  x ( k ` ( b ` 1 ) ) ( b ` 0 ) | 
						
							| 38 |  | c2 |  |-  2 | 
						
							| 39 | 38 21 | cfv |  |-  ( b ` 2 ) | 
						
							| 40 | 31 39 35 | wbr |  |-  y ( k ` ( b ` 1 ) ) ( b ` 2 ) | 
						
							| 41 | 33 37 40 | w3a |  |-  ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) | 
						
							| 42 | 41 25 13 | wrex |  |-  E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) | 
						
							| 43 | 42 24 13 | wrex |  |-  E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) | 
						
							| 44 | 23 43 | wa |  |-  ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) | 
						
							| 45 | 44 11 10 | wsbc |  |-  [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) | 
						
							| 46 | 45 8 7 | wsbc |  |-  [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) | 
						
							| 47 | 46 3 4 | copab |  |-  { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } | 
						
							| 48 | 1 2 47 | cmpt |  |-  ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) | 
						
							| 49 | 0 48 | wceq |  |-  cgrA = ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |