| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccgra | ⊢ cgrA | 
						
							| 1 |  | vg | ⊢ 𝑔 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | va | ⊢ 𝑎 | 
						
							| 4 |  | vb | ⊢ 𝑏 | 
						
							| 5 |  | cbs | ⊢ Base | 
						
							| 6 | 1 | cv | ⊢ 𝑔 | 
						
							| 7 | 6 5 | cfv | ⊢ ( Base ‘ 𝑔 ) | 
						
							| 8 |  | vp | ⊢ 𝑝 | 
						
							| 9 |  | chlg | ⊢ hlG | 
						
							| 10 | 6 9 | cfv | ⊢ ( hlG ‘ 𝑔 ) | 
						
							| 11 |  | vk | ⊢ 𝑘 | 
						
							| 12 | 3 | cv | ⊢ 𝑎 | 
						
							| 13 | 8 | cv | ⊢ 𝑝 | 
						
							| 14 |  | cmap | ⊢  ↑m | 
						
							| 15 |  | cc0 | ⊢ 0 | 
						
							| 16 |  | cfzo | ⊢ ..^ | 
						
							| 17 |  | c3 | ⊢ 3 | 
						
							| 18 | 15 17 16 | co | ⊢ ( 0 ..^ 3 ) | 
						
							| 19 | 13 18 14 | co | ⊢ ( 𝑝  ↑m  ( 0 ..^ 3 ) ) | 
						
							| 20 | 12 19 | wcel | ⊢ 𝑎  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) | 
						
							| 21 | 4 | cv | ⊢ 𝑏 | 
						
							| 22 | 21 19 | wcel | ⊢ 𝑏  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) | 
						
							| 23 | 20 22 | wa | ⊢ ( 𝑎  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) ) | 
						
							| 24 |  | vx | ⊢ 𝑥 | 
						
							| 25 |  | vy | ⊢ 𝑦 | 
						
							| 26 |  | ccgrg | ⊢ cgrG | 
						
							| 27 | 6 26 | cfv | ⊢ ( cgrG ‘ 𝑔 ) | 
						
							| 28 | 24 | cv | ⊢ 𝑥 | 
						
							| 29 |  | c1 | ⊢ 1 | 
						
							| 30 | 29 21 | cfv | ⊢ ( 𝑏 ‘ 1 ) | 
						
							| 31 | 25 | cv | ⊢ 𝑦 | 
						
							| 32 | 28 30 31 | cs3 | ⊢ 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 | 
						
							| 33 | 12 32 27 | wbr | ⊢ 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉 | 
						
							| 34 | 11 | cv | ⊢ 𝑘 | 
						
							| 35 | 30 34 | cfv | ⊢ ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) | 
						
							| 36 | 15 21 | cfv | ⊢ ( 𝑏 ‘ 0 ) | 
						
							| 37 | 28 36 35 | wbr | ⊢ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) | 
						
							| 38 |  | c2 | ⊢ 2 | 
						
							| 39 | 38 21 | cfv | ⊢ ( 𝑏 ‘ 2 ) | 
						
							| 40 | 31 39 35 | wbr | ⊢ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) | 
						
							| 41 | 33 37 40 | w3a | ⊢ ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) | 
						
							| 42 | 41 25 13 | wrex | ⊢ ∃ 𝑦  ∈  𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) | 
						
							| 43 | 42 24 13 | wrex | ⊢ ∃ 𝑥  ∈  𝑝 ∃ 𝑦  ∈  𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) | 
						
							| 44 | 23 43 | wa | ⊢ ( ( 𝑎  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  𝑝 ∃ 𝑦  ∈  𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) | 
						
							| 45 | 44 11 10 | wsbc | ⊢ [ ( hlG ‘ 𝑔 )  /  𝑘 ] ( ( 𝑎  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  𝑝 ∃ 𝑦  ∈  𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) | 
						
							| 46 | 45 8 7 | wsbc | ⊢ [ ( Base ‘ 𝑔 )  /  𝑝 ] [ ( hlG ‘ 𝑔 )  /  𝑘 ] ( ( 𝑎  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  𝑝 ∃ 𝑦  ∈  𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) | 
						
							| 47 | 46 3 4 | copab | ⊢ { 〈 𝑎 ,  𝑏 〉  ∣  [ ( Base ‘ 𝑔 )  /  𝑝 ] [ ( hlG ‘ 𝑔 )  /  𝑘 ] ( ( 𝑎  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  𝑝 ∃ 𝑦  ∈  𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } | 
						
							| 48 | 1 2 47 | cmpt | ⊢ ( 𝑔  ∈  V  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  [ ( Base ‘ 𝑔 )  /  𝑝 ] [ ( hlG ‘ 𝑔 )  /  𝑘 ] ( ( 𝑎  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  𝑝 ∃ 𝑦  ∈  𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } ) | 
						
							| 49 | 0 48 | wceq | ⊢ cgrA  =  ( 𝑔  ∈  V  ↦  { 〈 𝑎 ,  𝑏 〉  ∣  [ ( Base ‘ 𝑔 )  /  𝑝 ] [ ( hlG ‘ 𝑔 )  /  𝑘 ] ( ( 𝑎  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) )  ∧  𝑏  ∈  ( 𝑝  ↑m  ( 0 ..^ 3 ) ) )  ∧  ∃ 𝑥  ∈  𝑝 ∃ 𝑦  ∈  𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) 〈“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”〉  ∧  𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )  ∧  𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } ) |