Metamath Proof Explorer


Definition df-cgra

Description: Define the congruence relation between angles. As for triangles we use "words of points". See iscgra for a more human readable version. (Contributed by Thierry Arnoux, 30-Jul-2020)

Ref Expression
Assertion df-cgra cgrA = ( 𝑔 ∈ V ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥𝑝𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccgra cgrA
1 vg 𝑔
2 cvv V
3 va 𝑎
4 vb 𝑏
5 cbs Base
6 1 cv 𝑔
7 6 5 cfv ( Base ‘ 𝑔 )
8 vp 𝑝
9 chlg hlG
10 6 9 cfv ( hlG ‘ 𝑔 )
11 vk 𝑘
12 3 cv 𝑎
13 8 cv 𝑝
14 cmap m
15 cc0 0
16 cfzo ..^
17 c3 3
18 15 17 16 co ( 0 ..^ 3 )
19 13 18 14 co ( 𝑝m ( 0 ..^ 3 ) )
20 12 19 wcel 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) )
21 4 cv 𝑏
22 21 19 wcel 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) )
23 20 22 wa ( 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) ) )
24 vx 𝑥
25 vy 𝑦
26 ccgrg cgrG
27 6 26 cfv ( cgrG ‘ 𝑔 )
28 24 cv 𝑥
29 c1 1
30 29 21 cfv ( 𝑏 ‘ 1 )
31 25 cv 𝑦
32 28 30 31 cs3 ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩
33 12 32 27 wbr 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩
34 11 cv 𝑘
35 30 34 cfv ( 𝑘 ‘ ( 𝑏 ‘ 1 ) )
36 15 21 cfv ( 𝑏 ‘ 0 )
37 28 36 35 wbr 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 )
38 c2 2
39 38 21 cfv ( 𝑏 ‘ 2 )
40 31 39 35 wbr 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 )
41 33 37 40 w3a ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) )
42 41 25 13 wrex 𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) )
43 42 24 13 wrex 𝑥𝑝𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) )
44 23 43 wa ( ( 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥𝑝𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) )
45 44 11 10 wsbc [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥𝑝𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) )
46 45 8 7 wsbc [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥𝑝𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) )
47 46 3 4 copab { ⟨ 𝑎 , 𝑏 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥𝑝𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) }
48 1 2 47 cmpt ( 𝑔 ∈ V ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥𝑝𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } )
49 0 48 wceq cgrA = ( 𝑔 ∈ V ↦ { ⟨ 𝑎 , 𝑏 ⟩ ∣ [ ( Base ‘ 𝑔 ) / 𝑝 ] [ ( hlG ‘ 𝑔 ) / 𝑘 ] ( ( 𝑎 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ∧ 𝑏 ∈ ( 𝑝m ( 0 ..^ 3 ) ) ) ∧ ∃ 𝑥𝑝𝑦𝑝 ( 𝑎 ( cgrG ‘ 𝑔 ) ⟨“ 𝑥 ( 𝑏 ‘ 1 ) 𝑦 ”⟩ ∧ 𝑥 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 0 ) ∧ 𝑦 ( 𝑘 ‘ ( 𝑏 ‘ 1 ) ) ( 𝑏 ‘ 2 ) ) ) } )