Step |
Hyp |
Ref |
Expression |
1 |
|
sbcie2s.a |
|- A = ( E ` W ) |
2 |
|
sbcie2s.b |
|- B = ( F ` W ) |
3 |
|
sbcie2s.1 |
|- ( ( a = A /\ b = B ) -> ( ph <-> ps ) ) |
4 |
|
fvex |
|- ( E ` w ) e. _V |
5 |
|
fvex |
|- ( F ` w ) e. _V |
6 |
|
fveq2 |
|- ( w = W -> ( E ` w ) = ( E ` W ) ) |
7 |
6 1
|
eqtr4di |
|- ( w = W -> ( E ` w ) = A ) |
8 |
7
|
eqeq2d |
|- ( w = W -> ( a = ( E ` w ) <-> a = A ) ) |
9 |
8
|
biimpd |
|- ( w = W -> ( a = ( E ` w ) -> a = A ) ) |
10 |
|
fveq2 |
|- ( w = W -> ( F ` w ) = ( F ` W ) ) |
11 |
10 2
|
eqtr4di |
|- ( w = W -> ( F ` w ) = B ) |
12 |
11
|
eqeq2d |
|- ( w = W -> ( b = ( F ` w ) <-> b = B ) ) |
13 |
12
|
biimpd |
|- ( w = W -> ( b = ( F ` w ) -> b = B ) ) |
14 |
3
|
a1i |
|- ( w = W -> ( ( a = A /\ b = B ) -> ( ph <-> ps ) ) ) |
15 |
9 13 14
|
syl2and |
|- ( w = W -> ( ( a = ( E ` w ) /\ b = ( F ` w ) ) -> ( ph <-> ps ) ) ) |
16 |
4 5 15
|
sbc2iedv |
|- ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. ph <-> ps ) ) |