Metamath Proof Explorer


Theorem sbcie2s

Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses sbcie2s.a
|- A = ( E ` W )
sbcie2s.b
|- B = ( F ` W )
sbcie2s.1
|- ( ( a = A /\ b = B ) -> ( ph <-> ps ) )
Assertion sbcie2s
|- ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. ps <-> ph ) )

Proof

Step Hyp Ref Expression
1 sbcie2s.a
 |-  A = ( E ` W )
2 sbcie2s.b
 |-  B = ( F ` W )
3 sbcie2s.1
 |-  ( ( a = A /\ b = B ) -> ( ph <-> ps ) )
4 fvex
 |-  ( E ` w ) e. _V
5 fvex
 |-  ( F ` w ) e. _V
6 simprl
 |-  ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> a = ( E ` w ) )
7 fveq2
 |-  ( w = W -> ( E ` w ) = ( E ` W ) )
8 7 1 eqtr4di
 |-  ( w = W -> ( E ` w ) = A )
9 8 adantr
 |-  ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> ( E ` w ) = A )
10 6 9 eqtrd
 |-  ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> a = A )
11 simprr
 |-  ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> b = ( F ` w ) )
12 fveq2
 |-  ( w = W -> ( F ` w ) = ( F ` W ) )
13 12 2 eqtr4di
 |-  ( w = W -> ( F ` w ) = B )
14 13 adantr
 |-  ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> ( F ` w ) = B )
15 11 14 eqtrd
 |-  ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> b = B )
16 10 15 3 syl2anc
 |-  ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> ( ph <-> ps ) )
17 16 bicomd
 |-  ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> ( ps <-> ph ) )
18 17 ex
 |-  ( w = W -> ( ( a = ( E ` w ) /\ b = ( F ` w ) ) -> ( ps <-> ph ) ) )
19 4 5 18 sbc2iedv
 |-  ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. ps <-> ph ) )