Step |
Hyp |
Ref |
Expression |
1 |
|
sbcie2s.a |
|- A = ( E ` W ) |
2 |
|
sbcie2s.b |
|- B = ( F ` W ) |
3 |
|
sbcie2s.1 |
|- ( ( a = A /\ b = B ) -> ( ph <-> ps ) ) |
4 |
|
fvex |
|- ( E ` w ) e. _V |
5 |
|
fvex |
|- ( F ` w ) e. _V |
6 |
|
simprl |
|- ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> a = ( E ` w ) ) |
7 |
|
fveq2 |
|- ( w = W -> ( E ` w ) = ( E ` W ) ) |
8 |
7 1
|
eqtr4di |
|- ( w = W -> ( E ` w ) = A ) |
9 |
8
|
adantr |
|- ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> ( E ` w ) = A ) |
10 |
6 9
|
eqtrd |
|- ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> a = A ) |
11 |
|
simprr |
|- ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> b = ( F ` w ) ) |
12 |
|
fveq2 |
|- ( w = W -> ( F ` w ) = ( F ` W ) ) |
13 |
12 2
|
eqtr4di |
|- ( w = W -> ( F ` w ) = B ) |
14 |
13
|
adantr |
|- ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> ( F ` w ) = B ) |
15 |
11 14
|
eqtrd |
|- ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> b = B ) |
16 |
10 15 3
|
syl2anc |
|- ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> ( ph <-> ps ) ) |
17 |
16
|
bicomd |
|- ( ( w = W /\ ( a = ( E ` w ) /\ b = ( F ` w ) ) ) -> ( ps <-> ph ) ) |
18 |
17
|
ex |
|- ( w = W -> ( ( a = ( E ` w ) /\ b = ( F ` w ) ) -> ( ps <-> ph ) ) ) |
19 |
4 5 18
|
sbc2iedv |
|- ( w = W -> ( [. ( E ` w ) / a ]. [. ( F ` w ) / b ]. ps <-> ph ) ) |