Metamath Proof Explorer


Theorem cgrcomland

Description: Deduction form of cgrcoml . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses cgrcomlrand.1
|- ( ph -> N e. NN )
cgrcomlrand.2
|- ( ph -> A e. ( EE ` N ) )
cgrcomlrand.3
|- ( ph -> B e. ( EE ` N ) )
cgrcomlrand.4
|- ( ph -> C e. ( EE ` N ) )
cgrcomlrand.5
|- ( ph -> D e. ( EE ` N ) )
cgrcomlrand.6
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. )
Assertion cgrcomland
|- ( ( ph /\ ps ) -> <. B , A >. Cgr <. C , D >. )

Proof

Step Hyp Ref Expression
1 cgrcomlrand.1
 |-  ( ph -> N e. NN )
2 cgrcomlrand.2
 |-  ( ph -> A e. ( EE ` N ) )
3 cgrcomlrand.3
 |-  ( ph -> B e. ( EE ` N ) )
4 cgrcomlrand.4
 |-  ( ph -> C e. ( EE ` N ) )
5 cgrcomlrand.5
 |-  ( ph -> D e. ( EE ` N ) )
6 cgrcomlrand.6
 |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. )
7 cgrcoml
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> <. B , A >. Cgr <. C , D >. ) )
8 1 2 3 4 5 7 syl122anc
 |-  ( ph -> ( <. A , B >. Cgr <. C , D >. <-> <. B , A >. Cgr <. C , D >. ) )
9 8 adantr
 |-  ( ( ph /\ ps ) -> ( <. A , B >. Cgr <. C , D >. <-> <. B , A >. Cgr <. C , D >. ) )
10 6 9 mpbid
 |-  ( ( ph /\ ps ) -> <. B , A >. Cgr <. C , D >. )