Step |
Hyp |
Ref |
Expression |
1 |
|
cgrcomlrand.1 |
|- ( ph -> N e. NN ) |
2 |
|
cgrcomlrand.2 |
|- ( ph -> A e. ( EE ` N ) ) |
3 |
|
cgrcomlrand.3 |
|- ( ph -> B e. ( EE ` N ) ) |
4 |
|
cgrcomlrand.4 |
|- ( ph -> C e. ( EE ` N ) ) |
5 |
|
cgrcomlrand.5 |
|- ( ph -> D e. ( EE ` N ) ) |
6 |
|
cgrcomlrand.6 |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) |
7 |
|
cgrcomr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> <. A , B >. Cgr <. D , C >. ) ) |
8 |
1 2 3 4 5 7
|
syl122anc |
|- ( ph -> ( <. A , B >. Cgr <. C , D >. <-> <. A , B >. Cgr <. D , C >. ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ ps ) -> ( <. A , B >. Cgr <. C , D >. <-> <. A , B >. Cgr <. D , C >. ) ) |
10 |
6 9
|
mpbid |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. D , C >. ) |