Metamath Proof Explorer


Theorem cgrcomrand

Description: Deduction form of cgrcoml . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses cgrcomlrand.1 φ N
cgrcomlrand.2 φ A 𝔼 N
cgrcomlrand.3 φ B 𝔼 N
cgrcomlrand.4 φ C 𝔼 N
cgrcomlrand.5 φ D 𝔼 N
cgrcomlrand.6 φ ψ A B Cgr C D
Assertion cgrcomrand φ ψ A B Cgr D C

Proof

Step Hyp Ref Expression
1 cgrcomlrand.1 φ N
2 cgrcomlrand.2 φ A 𝔼 N
3 cgrcomlrand.3 φ B 𝔼 N
4 cgrcomlrand.4 φ C 𝔼 N
5 cgrcomlrand.5 φ D 𝔼 N
6 cgrcomlrand.6 φ ψ A B Cgr C D
7 cgrcomr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A B Cgr D C
8 1 2 3 4 5 7 syl122anc φ A B Cgr C D A B Cgr D C
9 8 adantr φ ψ A B Cgr C D A B Cgr D C
10 6 9 mpbid φ ψ A B Cgr D C