Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Congruence properties
cgrcomrand
Next ⟩
cgrcomlrand
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgrcomrand
Description:
Deduction form of
cgrcoml
.
(Contributed by
Scott Fenton
, 14-Oct-2013)
Ref
Expression
Hypotheses
cgrcomlrand.1
⊢
φ
→
N
∈
ℕ
cgrcomlrand.2
⊢
φ
→
A
∈
𝔼
⁡
N
cgrcomlrand.3
⊢
φ
→
B
∈
𝔼
⁡
N
cgrcomlrand.4
⊢
φ
→
C
∈
𝔼
⁡
N
cgrcomlrand.5
⊢
φ
→
D
∈
𝔼
⁡
N
cgrcomlrand.6
⊢
φ
∧
ψ
→
A
B
Cgr
C
D
Assertion
cgrcomrand
⊢
φ
∧
ψ
→
A
B
Cgr
D
C
Proof
Step
Hyp
Ref
Expression
1
cgrcomlrand.1
⊢
φ
→
N
∈
ℕ
2
cgrcomlrand.2
⊢
φ
→
A
∈
𝔼
⁡
N
3
cgrcomlrand.3
⊢
φ
→
B
∈
𝔼
⁡
N
4
cgrcomlrand.4
⊢
φ
→
C
∈
𝔼
⁡
N
5
cgrcomlrand.5
⊢
φ
→
D
∈
𝔼
⁡
N
6
cgrcomlrand.6
⊢
φ
∧
ψ
→
A
B
Cgr
C
D
7
cgrcomr
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
A
B
Cgr
C
D
↔
A
B
Cgr
D
C
8
1
2
3
4
5
7
syl122anc
⊢
φ
→
A
B
Cgr
C
D
↔
A
B
Cgr
D
C
9
8
adantr
⊢
φ
∧
ψ
→
A
B
Cgr
C
D
↔
A
B
Cgr
D
C
10
6
9
mpbid
⊢
φ
∧
ψ
→
A
B
Cgr
D
C