Metamath Proof Explorer


Theorem cgrcomlrand

Description: Deduction form of cgrcomlr . (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Hypotheses cgrcomlrand.1 φ N
cgrcomlrand.2 φ A 𝔼 N
cgrcomlrand.3 φ B 𝔼 N
cgrcomlrand.4 φ C 𝔼 N
cgrcomlrand.5 φ D 𝔼 N
cgrcomlrand.6 φ ψ A B Cgr C D
Assertion cgrcomlrand φ ψ B A Cgr D C

Proof

Step Hyp Ref Expression
1 cgrcomlrand.1 φ N
2 cgrcomlrand.2 φ A 𝔼 N
3 cgrcomlrand.3 φ B 𝔼 N
4 cgrcomlrand.4 φ C 𝔼 N
5 cgrcomlrand.5 φ D 𝔼 N
6 cgrcomlrand.6 φ ψ A B Cgr C D
7 1 2 3 4 5 6 cgrcomrand φ ψ A B Cgr D C
8 1 2 3 5 4 7 cgrcomland φ ψ B A Cgr D C