Metamath Proof Explorer


Theorem cgrcomlr

Description: Congruence commutes on both sides. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrcomlr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D B A Cgr D C

Proof

Step Hyp Ref Expression
1 cgrcoml N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D B A Cgr C D
2 ancom A 𝔼 N B 𝔼 N B 𝔼 N A 𝔼 N
3 cgrcomr N B 𝔼 N A 𝔼 N C 𝔼 N D 𝔼 N B A Cgr C D B A Cgr D C
4 2 3 syl3an2b N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B A Cgr C D B A Cgr D C
5 1 4 bitrd N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D B A Cgr D C