Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Congruence properties
cgrcomlr
Next ⟩
cgrcomland
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgrcomlr
Description:
Congruence commutes on both sides.
(Contributed by
Scott Fenton
, 12-Jun-2013)
Ref
Expression
Assertion
cgrcomlr
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
A
B
Cgr
C
D
↔
B
A
Cgr
D
C
Proof
Step
Hyp
Ref
Expression
1
cgrcoml
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
A
B
Cgr
C
D
↔
B
A
Cgr
C
D
2
ancom
⊢
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
↔
B
∈
𝔼
⁡
N
∧
A
∈
𝔼
⁡
N
3
cgrcomr
⊢
N
∈
ℕ
∧
B
∈
𝔼
⁡
N
∧
A
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
B
A
Cgr
C
D
↔
B
A
Cgr
D
C
4
2
3
syl3an2b
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
B
A
Cgr
C
D
↔
B
A
Cgr
D
C
5
1
4
bitrd
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
→
A
B
Cgr
C
D
↔
B
A
Cgr
D
C