Step |
Hyp |
Ref |
Expression |
1 |
|
cgrcoml |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> <. B , A >. Cgr <. C , D >. ) ) |
2 |
|
ancom |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
3 |
|
cgrcomr |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , A >. Cgr <. C , D >. <-> <. B , A >. Cgr <. D , C >. ) ) |
4 |
2 3
|
syl3an2b |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , A >. Cgr <. C , D >. <-> <. B , A >. Cgr <. D , C >. ) ) |
5 |
1 4
|
bitrd |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> <. B , A >. Cgr <. D , C >. ) ) |