Metamath Proof Explorer


Theorem cgrcomlr

Description: Congruence commutes on both sides. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrcomlr ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐵 , 𝐴 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ ) )

Proof

Step Hyp Ref Expression
1 cgrcoml ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐵 , 𝐴 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ) )
2 ancom ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ↔ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) )
3 cgrcomr ( ( 𝑁 ∈ ℕ ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , 𝐴 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐵 , 𝐴 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ ) )
4 2 3 syl3an2b ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐵 , 𝐴 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐵 , 𝐴 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ ) )
5 1 4 bitrd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ↔ ⟨ 𝐵 , 𝐴 ⟩ Cgr ⟨ 𝐷 , 𝐶 ⟩ ) )