Metamath Proof Explorer


Theorem cgrcomr

Description: Congruence commutes on the right. Biconditional version of Theorem 2.5 of Schwabhauser p. 27. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrcomr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A B Cgr D C

Proof

Step Hyp Ref Expression
1 cgrcoml N C 𝔼 N D 𝔼 N A 𝔼 N B 𝔼 N C D Cgr A B D C Cgr A B
2 1 3com23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D Cgr A B D C Cgr A B
3 cgrcom N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C D Cgr A B
4 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
5 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
6 simp2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B 𝔼 N
7 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
8 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
9 cgrcom N A 𝔼 N B 𝔼 N D 𝔼 N C 𝔼 N A B Cgr D C D C Cgr A B
10 4 5 6 7 8 9 syl122anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr D C D C Cgr A B
11 2 3 10 3bitr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A B Cgr D C