Description: Deduction form of cgrcomlr . (Contributed by Scott Fenton, 14-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgrcomlrand.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| cgrcomlrand.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
| cgrcomlrand.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
| cgrcomlrand.4 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
| cgrcomlrand.5 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) | ||
| cgrcomlrand.6 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ) | ||
| Assertion | cgrcomlrand | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐷 , 𝐶 〉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cgrcomlrand.1 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 2 | cgrcomlrand.2 | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
| 3 | cgrcomlrand.3 | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
| 4 | cgrcomlrand.4 | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
| 5 | cgrcomlrand.5 | ⊢ ( 𝜑 → 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ) | |
| 6 | cgrcomlrand.6 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐶 , 𝐷 〉 ) | |
| 7 | 1 2 3 4 5 6 | cgrcomrand | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐷 , 𝐶 〉 ) | 
| 8 | 1 2 3 5 4 7 | cgrcomland | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 〈 𝐵 , 𝐴 〉 Cgr 〈 𝐷 , 𝐶 〉 ) |