Description: Deduction form of cgrcomlr . (Contributed by Scott Fenton, 14-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgrcomlrand.1 | |- ( ph -> N e. NN ) | |
| cgrcomlrand.2 | |- ( ph -> A e. ( EE ` N ) ) | ||
| cgrcomlrand.3 | |- ( ph -> B e. ( EE ` N ) ) | ||
| cgrcomlrand.4 | |- ( ph -> C e. ( EE ` N ) ) | ||
| cgrcomlrand.5 | |- ( ph -> D e. ( EE ` N ) ) | ||
| cgrcomlrand.6 | |- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) | ||
| Assertion | cgrcomlrand | |- ( ( ph /\ ps ) -> <. B , A >. Cgr <. D , C >. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cgrcomlrand.1 | |- ( ph -> N e. NN ) | |
| 2 | cgrcomlrand.2 | |- ( ph -> A e. ( EE ` N ) ) | |
| 3 | cgrcomlrand.3 | |- ( ph -> B e. ( EE ` N ) ) | |
| 4 | cgrcomlrand.4 | |- ( ph -> C e. ( EE ` N ) ) | |
| 5 | cgrcomlrand.5 | |- ( ph -> D e. ( EE ` N ) ) | |
| 6 | cgrcomlrand.6 | |- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) | |
| 7 | 1 2 3 4 5 6 | cgrcomrand | |- ( ( ph /\ ps ) -> <. A , B >. Cgr <. D , C >. ) | 
| 8 | 1 2 3 5 4 7 | cgrcomland | |- ( ( ph /\ ps ) -> <. B , A >. Cgr <. D , C >. ) |