Description: Deduction form of cgrcomlr . (Contributed by Scott Fenton, 14-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cgrcomlrand.1 | |- ( ph -> N e. NN ) |
|
cgrcomlrand.2 | |- ( ph -> A e. ( EE ` N ) ) |
||
cgrcomlrand.3 | |- ( ph -> B e. ( EE ` N ) ) |
||
cgrcomlrand.4 | |- ( ph -> C e. ( EE ` N ) ) |
||
cgrcomlrand.5 | |- ( ph -> D e. ( EE ` N ) ) |
||
cgrcomlrand.6 | |- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) |
||
Assertion | cgrcomlrand | |- ( ( ph /\ ps ) -> <. B , A >. Cgr <. D , C >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgrcomlrand.1 | |- ( ph -> N e. NN ) |
|
2 | cgrcomlrand.2 | |- ( ph -> A e. ( EE ` N ) ) |
|
3 | cgrcomlrand.3 | |- ( ph -> B e. ( EE ` N ) ) |
|
4 | cgrcomlrand.4 | |- ( ph -> C e. ( EE ` N ) ) |
|
5 | cgrcomlrand.5 | |- ( ph -> D e. ( EE ` N ) ) |
|
6 | cgrcomlrand.6 | |- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) |
|
7 | 1 2 3 4 5 6 | cgrcomrand | |- ( ( ph /\ ps ) -> <. A , B >. Cgr <. D , C >. ) |
8 | 1 2 3 5 4 7 | cgrcomland | |- ( ( ph /\ ps ) -> <. B , A >. Cgr <. D , C >. ) |