Metamath Proof Explorer


Theorem cgrtriv

Description: Degenerate segments are congruent. Theorem 2.8 of Schwabhauser p. 28. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrtriv
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , A >. Cgr <. B , B >. )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN )
2 simp2
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) )
3 simp3
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) )
4 axsegcon
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( A Btwn <. A , x >. /\ <. A , x >. Cgr <. B , B >. ) )
5 1 2 2 3 3 4 syl122anc
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. x e. ( EE ` N ) ( A Btwn <. A , x >. /\ <. A , x >. Cgr <. B , B >. ) )
6 simpl1
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> N e. NN )
7 simpl2
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) )
8 simpr
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) )
9 simpl3
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> B e. ( EE ` N ) )
10 axcgrid
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , x >. Cgr <. B , B >. -> A = x ) )
11 6 7 8 9 10 syl13anc
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( <. A , x >. Cgr <. B , B >. -> A = x ) )
12 opeq2
 |-  ( A = x -> <. A , A >. = <. A , x >. )
13 12 breq1d
 |-  ( A = x -> ( <. A , A >. Cgr <. B , B >. <-> <. A , x >. Cgr <. B , B >. ) )
14 13 biimprd
 |-  ( A = x -> ( <. A , x >. Cgr <. B , B >. -> <. A , A >. Cgr <. B , B >. ) )
15 11 14 syli
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( <. A , x >. Cgr <. B , B >. -> <. A , A >. Cgr <. B , B >. ) )
16 15 adantld
 |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( ( A Btwn <. A , x >. /\ <. A , x >. Cgr <. B , B >. ) -> <. A , A >. Cgr <. B , B >. ) )
17 16 rexlimdva
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( E. x e. ( EE ` N ) ( A Btwn <. A , x >. /\ <. A , x >. Cgr <. B , B >. ) -> <. A , A >. Cgr <. B , B >. ) )
18 5 17 mpd
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , A >. Cgr <. B , B >. )