| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 2 |  | simp2 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 3 |  | simp3 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 4 |  | axsegcon |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> E. x e. ( EE ` N ) ( A Btwn <. A , x >. /\ <. A , x >. Cgr <. B , B >. ) ) | 
						
							| 5 | 1 2 2 3 3 4 | syl122anc |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> E. x e. ( EE ` N ) ( A Btwn <. A , x >. /\ <. A , x >. Cgr <. B , B >. ) ) | 
						
							| 6 |  | simpl1 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> N e. NN ) | 
						
							| 7 |  | simpl2 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> x e. ( EE ` N ) ) | 
						
							| 9 |  | simpl3 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 10 |  | axcgrid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ x e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) -> ( <. A , x >. Cgr <. B , B >. -> A = x ) ) | 
						
							| 11 | 6 7 8 9 10 | syl13anc |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( <. A , x >. Cgr <. B , B >. -> A = x ) ) | 
						
							| 12 |  | opeq2 |  |-  ( A = x -> <. A , A >. = <. A , x >. ) | 
						
							| 13 | 12 | breq1d |  |-  ( A = x -> ( <. A , A >. Cgr <. B , B >. <-> <. A , x >. Cgr <. B , B >. ) ) | 
						
							| 14 | 13 | biimprd |  |-  ( A = x -> ( <. A , x >. Cgr <. B , B >. -> <. A , A >. Cgr <. B , B >. ) ) | 
						
							| 15 | 11 14 | syli |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( <. A , x >. Cgr <. B , B >. -> <. A , A >. Cgr <. B , B >. ) ) | 
						
							| 16 | 15 | adantld |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ x e. ( EE ` N ) ) -> ( ( A Btwn <. A , x >. /\ <. A , x >. Cgr <. B , B >. ) -> <. A , A >. Cgr <. B , B >. ) ) | 
						
							| 17 | 16 | rexlimdva |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( E. x e. ( EE ` N ) ( A Btwn <. A , x >. /\ <. A , x >. Cgr <. B , B >. ) -> <. A , A >. Cgr <. B , B >. ) ) | 
						
							| 18 | 5 17 | mpd |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , A >. Cgr <. B , B >. ) |