Metamath Proof Explorer


Theorem cgrtriv

Description: Degenerate segments are congruent. Theorem 2.8 of Schwabhauser p. 28. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrtriv ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ )
2 simp2 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 simp3 ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 axsegcon ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐴 Btwn ⟨ 𝐴 , 𝑥 ⟩ ∧ ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) )
5 1 2 2 3 3 4 syl122anc ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐴 Btwn ⟨ 𝐴 , 𝑥 ⟩ ∧ ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) )
6 simpl1 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑁 ∈ ℕ )
7 simpl2 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
8 simpr ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) )
9 simpl3 ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
10 axcgrid ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ → 𝐴 = 𝑥 ) )
11 6 7 8 9 10 syl13anc ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ → 𝐴 = 𝑥 ) )
12 opeq2 ( 𝐴 = 𝑥 → ⟨ 𝐴 , 𝐴 ⟩ = ⟨ 𝐴 , 𝑥 ⟩ )
13 12 breq1d ( 𝐴 = 𝑥 → ( ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ↔ ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) )
14 13 biimprd ( 𝐴 = 𝑥 → ( ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ → ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) )
15 11 14 syli ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ → ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) )
16 15 adantld ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ( 𝐴 Btwn ⟨ 𝐴 , 𝑥 ⟩ ∧ ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) → ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) )
17 16 rexlimdva ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ∃ 𝑥 ∈ ( 𝔼 ‘ 𝑁 ) ( 𝐴 Btwn ⟨ 𝐴 , 𝑥 ⟩ ∧ ⟨ 𝐴 , 𝑥 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) → ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ ) )
18 5 17 mpd ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ⟨ 𝐴 , 𝐴 ⟩ Cgr ⟨ 𝐵 , 𝐵 ⟩ )