| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> N e. NN ) |
| 2 |
|
simpr1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
| 3 |
|
simpr2 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
| 4 |
|
simpr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
| 5 |
|
cgrcom |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , A >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , A >. ) ) |
| 6 |
1 2 2 3 4 5
|
syl122anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , A >. Cgr <. B , C >. <-> <. B , C >. Cgr <. A , A >. ) ) |
| 7 |
|
3anrot |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) <-> ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) |
| 8 |
|
axcgrid |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. A , A >. -> B = C ) ) |
| 9 |
7 8
|
sylan2b |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. B , C >. Cgr <. A , A >. -> B = C ) ) |
| 10 |
6 9
|
sylbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , A >. Cgr <. B , C >. -> B = C ) ) |