Step |
Hyp |
Ref |
Expression |
1 |
|
opeq1 |
|- ( A = B -> <. A , B >. = <. B , B >. ) |
2 |
1
|
breq1d |
|- ( A = B -> ( <. A , B >. Cgr <. C , D >. <-> <. B , B >. Cgr <. C , D >. ) ) |
3 |
2
|
biimpac |
|- ( ( <. A , B >. Cgr <. C , D >. /\ A = B ) -> <. B , B >. Cgr <. C , D >. ) |
4 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
5 |
|
simp2r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
6 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
7 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
8 |
|
cgrid2 |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. C , D >. -> C = D ) ) |
9 |
4 5 6 7 8
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. C , D >. -> C = D ) ) |
10 |
3 9
|
syl5 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. C , D >. /\ A = B ) -> C = D ) ) |
11 |
10
|
expdimp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ <. A , B >. Cgr <. C , D >. ) -> ( A = B -> C = D ) ) |
12 |
|
opeq1 |
|- ( C = D -> <. C , D >. = <. D , D >. ) |
13 |
12
|
breq2d |
|- ( C = D -> ( <. A , B >. Cgr <. C , D >. <-> <. A , B >. Cgr <. D , D >. ) ) |
14 |
13
|
biimpac |
|- ( ( <. A , B >. Cgr <. C , D >. /\ C = D ) -> <. A , B >. Cgr <. D , D >. ) |
15 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
16 |
|
axcgrid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , D >. -> A = B ) ) |
17 |
4 15 5 7 16
|
syl13anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , D >. -> A = B ) ) |
18 |
14 17
|
syl5 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. C , D >. /\ C = D ) -> A = B ) ) |
19 |
18
|
expdimp |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ <. A , B >. Cgr <. C , D >. ) -> ( C = D -> A = B ) ) |
20 |
11 19
|
impbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ <. A , B >. Cgr <. C , D >. ) -> ( A = B <-> C = D ) ) |
21 |
20
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. -> ( A = B <-> C = D ) ) ) |