| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opeq1 |  |-  ( A = B -> <. A , B >. = <. B , B >. ) | 
						
							| 2 | 1 | breq1d |  |-  ( A = B -> ( <. A , B >. Cgr <. C , D >. <-> <. B , B >. Cgr <. C , D >. ) ) | 
						
							| 3 | 2 | biimpac |  |-  ( ( <. A , B >. Cgr <. C , D >. /\ A = B ) -> <. B , B >. Cgr <. C , D >. ) | 
						
							| 4 |  | simp1 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) | 
						
							| 5 |  | simp2r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) | 
						
							| 6 |  | simp3l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) | 
						
							| 7 |  | simp3r |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) | 
						
							| 8 |  | cgrid2 |  |-  ( ( N e. NN /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. C , D >. -> C = D ) ) | 
						
							| 9 | 4 5 6 7 8 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , B >. Cgr <. C , D >. -> C = D ) ) | 
						
							| 10 | 3 9 | syl5 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. C , D >. /\ A = B ) -> C = D ) ) | 
						
							| 11 | 10 | expdimp |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ <. A , B >. Cgr <. C , D >. ) -> ( A = B -> C = D ) ) | 
						
							| 12 |  | opeq1 |  |-  ( C = D -> <. C , D >. = <. D , D >. ) | 
						
							| 13 | 12 | breq2d |  |-  ( C = D -> ( <. A , B >. Cgr <. C , D >. <-> <. A , B >. Cgr <. D , D >. ) ) | 
						
							| 14 | 13 | biimpac |  |-  ( ( <. A , B >. Cgr <. C , D >. /\ C = D ) -> <. A , B >. Cgr <. D , D >. ) | 
						
							| 15 |  | simp2l |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) | 
						
							| 16 |  | axcgrid |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , D >. -> A = B ) ) | 
						
							| 17 | 4 15 5 7 16 | syl13anc |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. D , D >. -> A = B ) ) | 
						
							| 18 | 14 17 | syl5 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. C , D >. /\ C = D ) -> A = B ) ) | 
						
							| 19 | 18 | expdimp |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ <. A , B >. Cgr <. C , D >. ) -> ( C = D -> A = B ) ) | 
						
							| 20 | 11 19 | impbid |  |-  ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) /\ <. A , B >. Cgr <. C , D >. ) -> ( A = B <-> C = D ) ) | 
						
							| 21 | 20 | ex |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. -> ( A = B <-> C = D ) ) ) |