Metamath Proof Explorer


Theorem cgrdegen

Description: Two congruent segments are either both degenerate or both nondegenerate. (Contributed by Scott Fenton, 12-Jun-2013)

Ref Expression
Assertion cgrdegen N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A = B C = D

Proof

Step Hyp Ref Expression
1 opeq1 A = B A B = B B
2 1 breq1d A = B A B Cgr C D B B Cgr C D
3 2 biimpac A B Cgr C D A = B B B Cgr C D
4 simp1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N N
5 simp2r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B 𝔼 N
6 simp3l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C 𝔼 N
7 simp3r N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N D 𝔼 N
8 cgrid2 N B 𝔼 N C 𝔼 N D 𝔼 N B B Cgr C D C = D
9 4 5 6 7 8 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N B B Cgr C D C = D
10 3 9 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A = B C = D
11 10 expdimp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A = B C = D
12 opeq1 C = D C D = D D
13 12 breq2d C = D A B Cgr C D A B Cgr D D
14 13 biimpac A B Cgr C D C = D A B Cgr D D
15 simp2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A 𝔼 N
16 axcgrid N A 𝔼 N B 𝔼 N D 𝔼 N A B Cgr D D A = B
17 4 15 5 7 16 syl13anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr D D A = B
18 14 17 syl5 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C = D A = B
19 18 expdimp N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D C = D A = B
20 11 19 impbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A = B C = D
21 20 ex N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D A = B C = D