Metamath Proof Explorer


Theorem brofs

Description: Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013)

Ref Expression
Assertion brofs N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H

Proof

Step Hyp Ref Expression
1 opeq1 a = A a c = A c
2 1 breq2d a = A b Btwn a c b Btwn A c
3 2 anbi1d a = A b Btwn a c f Btwn e g b Btwn A c f Btwn e g
4 opeq1 a = A a b = A b
5 4 breq1d a = A a b Cgr e f A b Cgr e f
6 5 anbi1d a = A a b Cgr e f b c Cgr f g A b Cgr e f b c Cgr f g
7 opeq1 a = A a d = A d
8 7 breq1d a = A a d Cgr e h A d Cgr e h
9 8 anbi1d a = A a d Cgr e h b d Cgr f h A d Cgr e h b d Cgr f h
10 3 6 9 3anbi123d a = A b Btwn a c f Btwn e g a b Cgr e f b c Cgr f g a d Cgr e h b d Cgr f h b Btwn A c f Btwn e g A b Cgr e f b c Cgr f g A d Cgr e h b d Cgr f h
11 breq1 b = B b Btwn A c B Btwn A c
12 11 anbi1d b = B b Btwn A c f Btwn e g B Btwn A c f Btwn e g
13 opeq2 b = B A b = A B
14 13 breq1d b = B A b Cgr e f A B Cgr e f
15 opeq1 b = B b c = B c
16 15 breq1d b = B b c Cgr f g B c Cgr f g
17 14 16 anbi12d b = B A b Cgr e f b c Cgr f g A B Cgr e f B c Cgr f g
18 opeq1 b = B b d = B d
19 18 breq1d b = B b d Cgr f h B d Cgr f h
20 19 anbi2d b = B A d Cgr e h b d Cgr f h A d Cgr e h B d Cgr f h
21 12 17 20 3anbi123d b = B b Btwn A c f Btwn e g A b Cgr e f b c Cgr f g A d Cgr e h b d Cgr f h B Btwn A c f Btwn e g A B Cgr e f B c Cgr f g A d Cgr e h B d Cgr f h
22 opeq2 c = C A c = A C
23 22 breq2d c = C B Btwn A c B Btwn A C
24 23 anbi1d c = C B Btwn A c f Btwn e g B Btwn A C f Btwn e g
25 opeq2 c = C B c = B C
26 25 breq1d c = C B c Cgr f g B C Cgr f g
27 26 anbi2d c = C A B Cgr e f B c Cgr f g A B Cgr e f B C Cgr f g
28 24 27 3anbi12d c = C B Btwn A c f Btwn e g A B Cgr e f B c Cgr f g A d Cgr e h B d Cgr f h B Btwn A C f Btwn e g A B Cgr e f B C Cgr f g A d Cgr e h B d Cgr f h
29 opeq2 d = D A d = A D
30 29 breq1d d = D A d Cgr e h A D Cgr e h
31 opeq2 d = D B d = B D
32 31 breq1d d = D B d Cgr f h B D Cgr f h
33 30 32 anbi12d d = D A d Cgr e h B d Cgr f h A D Cgr e h B D Cgr f h
34 33 3anbi3d d = D B Btwn A C f Btwn e g A B Cgr e f B C Cgr f g A d Cgr e h B d Cgr f h B Btwn A C f Btwn e g A B Cgr e f B C Cgr f g A D Cgr e h B D Cgr f h
35 opeq1 e = E e g = E g
36 35 breq2d e = E f Btwn e g f Btwn E g
37 36 anbi2d e = E B Btwn A C f Btwn e g B Btwn A C f Btwn E g
38 opeq1 e = E e f = E f
39 38 breq2d e = E A B Cgr e f A B Cgr E f
40 39 anbi1d e = E A B Cgr e f B C Cgr f g A B Cgr E f B C Cgr f g
41 opeq1 e = E e h = E h
42 41 breq2d e = E A D Cgr e h A D Cgr E h
43 42 anbi1d e = E A D Cgr e h B D Cgr f h A D Cgr E h B D Cgr f h
44 37 40 43 3anbi123d e = E B Btwn A C f Btwn e g A B Cgr e f B C Cgr f g A D Cgr e h B D Cgr f h B Btwn A C f Btwn E g A B Cgr E f B C Cgr f g A D Cgr E h B D Cgr f h
45 breq1 f = F f Btwn E g F Btwn E g
46 45 anbi2d f = F B Btwn A C f Btwn E g B Btwn A C F Btwn E g
47 opeq2 f = F E f = E F
48 47 breq2d f = F A B Cgr E f A B Cgr E F
49 opeq1 f = F f g = F g
50 49 breq2d f = F B C Cgr f g B C Cgr F g
51 48 50 anbi12d f = F A B Cgr E f B C Cgr f g A B Cgr E F B C Cgr F g
52 opeq1 f = F f h = F h
53 52 breq2d f = F B D Cgr f h B D Cgr F h
54 53 anbi2d f = F A D Cgr E h B D Cgr f h A D Cgr E h B D Cgr F h
55 46 51 54 3anbi123d f = F B Btwn A C f Btwn E g A B Cgr E f B C Cgr f g A D Cgr E h B D Cgr f h B Btwn A C F Btwn E g A B Cgr E F B C Cgr F g A D Cgr E h B D Cgr F h
56 opeq2 g = G E g = E G
57 56 breq2d g = G F Btwn E g F Btwn E G
58 57 anbi2d g = G B Btwn A C F Btwn E g B Btwn A C F Btwn E G
59 opeq2 g = G F g = F G
60 59 breq2d g = G B C Cgr F g B C Cgr F G
61 60 anbi2d g = G A B Cgr E F B C Cgr F g A B Cgr E F B C Cgr F G
62 58 61 3anbi12d g = G B Btwn A C F Btwn E g A B Cgr E F B C Cgr F g A D Cgr E h B D Cgr F h B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E h B D Cgr F h
63 opeq2 h = H E h = E H
64 63 breq2d h = H A D Cgr E h A D Cgr E H
65 opeq2 h = H F h = F H
66 65 breq2d h = H B D Cgr F h B D Cgr F H
67 64 66 anbi12d h = H A D Cgr E h B D Cgr F h A D Cgr E H B D Cgr F H
68 67 3anbi3d h = H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E h B D Cgr F h B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H
69 fveq2 n = N 𝔼 n = 𝔼 N
70 df-ofs OuterFiveSeg = p q | n a 𝔼 n b 𝔼 n c 𝔼 n d 𝔼 n e 𝔼 n f 𝔼 n g 𝔼 n h 𝔼 n p = a b c d q = e f g h b Btwn a c f Btwn e g a b Cgr e f b c Cgr f g a d Cgr e h b d Cgr f h
71 10 21 28 34 44 55 62 68 69 70 br8 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N G 𝔼 N H 𝔼 N A B C D OuterFiveSeg E F G H B Btwn A C F Btwn E G A B Cgr E F B C Cgr F G A D Cgr E H B D Cgr F H