| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opeq1 |
|- ( a = A -> <. a , c >. = <. A , c >. ) |
| 2 |
1
|
breq2d |
|- ( a = A -> ( b Btwn <. a , c >. <-> b Btwn <. A , c >. ) ) |
| 3 |
2
|
anbi1d |
|- ( a = A -> ( ( b Btwn <. a , c >. /\ f Btwn <. e , g >. ) <-> ( b Btwn <. A , c >. /\ f Btwn <. e , g >. ) ) ) |
| 4 |
|
opeq1 |
|- ( a = A -> <. a , b >. = <. A , b >. ) |
| 5 |
4
|
breq1d |
|- ( a = A -> ( <. a , b >. Cgr <. e , f >. <-> <. A , b >. Cgr <. e , f >. ) ) |
| 6 |
5
|
anbi1d |
|- ( a = A -> ( ( <. a , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) <-> ( <. A , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) ) ) |
| 7 |
|
opeq1 |
|- ( a = A -> <. a , d >. = <. A , d >. ) |
| 8 |
7
|
breq1d |
|- ( a = A -> ( <. a , d >. Cgr <. e , h >. <-> <. A , d >. Cgr <. e , h >. ) ) |
| 9 |
8
|
anbi1d |
|- ( a = A -> ( ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) <-> ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) |
| 10 |
3 6 9
|
3anbi123d |
|- ( a = A -> ( ( ( b Btwn <. a , c >. /\ f Btwn <. e , g >. ) /\ ( <. a , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) /\ ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) <-> ( ( b Btwn <. A , c >. /\ f Btwn <. e , g >. ) /\ ( <. A , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) ) |
| 11 |
|
breq1 |
|- ( b = B -> ( b Btwn <. A , c >. <-> B Btwn <. A , c >. ) ) |
| 12 |
11
|
anbi1d |
|- ( b = B -> ( ( b Btwn <. A , c >. /\ f Btwn <. e , g >. ) <-> ( B Btwn <. A , c >. /\ f Btwn <. e , g >. ) ) ) |
| 13 |
|
opeq2 |
|- ( b = B -> <. A , b >. = <. A , B >. ) |
| 14 |
13
|
breq1d |
|- ( b = B -> ( <. A , b >. Cgr <. e , f >. <-> <. A , B >. Cgr <. e , f >. ) ) |
| 15 |
|
opeq1 |
|- ( b = B -> <. b , c >. = <. B , c >. ) |
| 16 |
15
|
breq1d |
|- ( b = B -> ( <. b , c >. Cgr <. f , g >. <-> <. B , c >. Cgr <. f , g >. ) ) |
| 17 |
14 16
|
anbi12d |
|- ( b = B -> ( ( <. A , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) <-> ( <. A , B >. Cgr <. e , f >. /\ <. B , c >. Cgr <. f , g >. ) ) ) |
| 18 |
|
opeq1 |
|- ( b = B -> <. b , d >. = <. B , d >. ) |
| 19 |
18
|
breq1d |
|- ( b = B -> ( <. b , d >. Cgr <. f , h >. <-> <. B , d >. Cgr <. f , h >. ) ) |
| 20 |
19
|
anbi2d |
|- ( b = B -> ( ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) <-> ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) |
| 21 |
12 17 20
|
3anbi123d |
|- ( b = B -> ( ( ( b Btwn <. A , c >. /\ f Btwn <. e , g >. ) /\ ( <. A , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , c >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , c >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) ) |
| 22 |
|
opeq2 |
|- ( c = C -> <. A , c >. = <. A , C >. ) |
| 23 |
22
|
breq2d |
|- ( c = C -> ( B Btwn <. A , c >. <-> B Btwn <. A , C >. ) ) |
| 24 |
23
|
anbi1d |
|- ( c = C -> ( ( B Btwn <. A , c >. /\ f Btwn <. e , g >. ) <-> ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) ) ) |
| 25 |
|
opeq2 |
|- ( c = C -> <. B , c >. = <. B , C >. ) |
| 26 |
25
|
breq1d |
|- ( c = C -> ( <. B , c >. Cgr <. f , g >. <-> <. B , C >. Cgr <. f , g >. ) ) |
| 27 |
26
|
anbi2d |
|- ( c = C -> ( ( <. A , B >. Cgr <. e , f >. /\ <. B , c >. Cgr <. f , g >. ) <-> ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) ) ) |
| 28 |
24 27
|
3anbi12d |
|- ( c = C -> ( ( ( B Btwn <. A , c >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , c >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) ) |
| 29 |
|
opeq2 |
|- ( d = D -> <. A , d >. = <. A , D >. ) |
| 30 |
29
|
breq1d |
|- ( d = D -> ( <. A , d >. Cgr <. e , h >. <-> <. A , D >. Cgr <. e , h >. ) ) |
| 31 |
|
opeq2 |
|- ( d = D -> <. B , d >. = <. B , D >. ) |
| 32 |
31
|
breq1d |
|- ( d = D -> ( <. B , d >. Cgr <. f , h >. <-> <. B , D >. Cgr <. f , h >. ) ) |
| 33 |
30 32
|
anbi12d |
|- ( d = D -> ( ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) |
| 34 |
33
|
3anbi3d |
|- ( d = D -> ( ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) ) |
| 35 |
|
opeq1 |
|- ( e = E -> <. e , g >. = <. E , g >. ) |
| 36 |
35
|
breq2d |
|- ( e = E -> ( f Btwn <. e , g >. <-> f Btwn <. E , g >. ) ) |
| 37 |
36
|
anbi2d |
|- ( e = E -> ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) <-> ( B Btwn <. A , C >. /\ f Btwn <. E , g >. ) ) ) |
| 38 |
|
opeq1 |
|- ( e = E -> <. e , f >. = <. E , f >. ) |
| 39 |
38
|
breq2d |
|- ( e = E -> ( <. A , B >. Cgr <. e , f >. <-> <. A , B >. Cgr <. E , f >. ) ) |
| 40 |
39
|
anbi1d |
|- ( e = E -> ( ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) <-> ( <. A , B >. Cgr <. E , f >. /\ <. B , C >. Cgr <. f , g >. ) ) ) |
| 41 |
|
opeq1 |
|- ( e = E -> <. e , h >. = <. E , h >. ) |
| 42 |
41
|
breq2d |
|- ( e = E -> ( <. A , D >. Cgr <. e , h >. <-> <. A , D >. Cgr <. E , h >. ) ) |
| 43 |
42
|
anbi1d |
|- ( e = E -> ( ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) |
| 44 |
37 40 43
|
3anbi123d |
|- ( e = E -> ( ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ f Btwn <. E , g >. ) /\ ( <. A , B >. Cgr <. E , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) ) |
| 45 |
|
breq1 |
|- ( f = F -> ( f Btwn <. E , g >. <-> F Btwn <. E , g >. ) ) |
| 46 |
45
|
anbi2d |
|- ( f = F -> ( ( B Btwn <. A , C >. /\ f Btwn <. E , g >. ) <-> ( B Btwn <. A , C >. /\ F Btwn <. E , g >. ) ) ) |
| 47 |
|
opeq2 |
|- ( f = F -> <. E , f >. = <. E , F >. ) |
| 48 |
47
|
breq2d |
|- ( f = F -> ( <. A , B >. Cgr <. E , f >. <-> <. A , B >. Cgr <. E , F >. ) ) |
| 49 |
|
opeq1 |
|- ( f = F -> <. f , g >. = <. F , g >. ) |
| 50 |
49
|
breq2d |
|- ( f = F -> ( <. B , C >. Cgr <. f , g >. <-> <. B , C >. Cgr <. F , g >. ) ) |
| 51 |
48 50
|
anbi12d |
|- ( f = F -> ( ( <. A , B >. Cgr <. E , f >. /\ <. B , C >. Cgr <. f , g >. ) <-> ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , g >. ) ) ) |
| 52 |
|
opeq1 |
|- ( f = F -> <. f , h >. = <. F , h >. ) |
| 53 |
52
|
breq2d |
|- ( f = F -> ( <. B , D >. Cgr <. f , h >. <-> <. B , D >. Cgr <. F , h >. ) ) |
| 54 |
53
|
anbi2d |
|- ( f = F -> ( ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) |
| 55 |
46 51 54
|
3anbi123d |
|- ( f = F -> ( ( ( B Btwn <. A , C >. /\ f Btwn <. E , g >. ) /\ ( <. A , B >. Cgr <. E , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , g >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , g >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) ) |
| 56 |
|
opeq2 |
|- ( g = G -> <. E , g >. = <. E , G >. ) |
| 57 |
56
|
breq2d |
|- ( g = G -> ( F Btwn <. E , g >. <-> F Btwn <. E , G >. ) ) |
| 58 |
57
|
anbi2d |
|- ( g = G -> ( ( B Btwn <. A , C >. /\ F Btwn <. E , g >. ) <-> ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) ) ) |
| 59 |
|
opeq2 |
|- ( g = G -> <. F , g >. = <. F , G >. ) |
| 60 |
59
|
breq2d |
|- ( g = G -> ( <. B , C >. Cgr <. F , g >. <-> <. B , C >. Cgr <. F , G >. ) ) |
| 61 |
60
|
anbi2d |
|- ( g = G -> ( ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , g >. ) <-> ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) ) ) |
| 62 |
58 61
|
3anbi12d |
|- ( g = G -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , g >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , g >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) ) |
| 63 |
|
opeq2 |
|- ( h = H -> <. E , h >. = <. E , H >. ) |
| 64 |
63
|
breq2d |
|- ( h = H -> ( <. A , D >. Cgr <. E , h >. <-> <. A , D >. Cgr <. E , H >. ) ) |
| 65 |
|
opeq2 |
|- ( h = H -> <. F , h >. = <. F , H >. ) |
| 66 |
65
|
breq2d |
|- ( h = H -> ( <. B , D >. Cgr <. F , h >. <-> <. B , D >. Cgr <. F , H >. ) ) |
| 67 |
64 66
|
anbi12d |
|- ( h = H -> ( ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) <-> ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) |
| 68 |
67
|
3anbi3d |
|- ( h = H -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) |
| 69 |
|
fveq2 |
|- ( n = N -> ( EE ` n ) = ( EE ` N ) ) |
| 70 |
|
df-ofs |
|- OuterFiveSeg = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) E. e e. ( EE ` n ) E. f e. ( EE ` n ) E. g e. ( EE ` n ) E. h e. ( EE ` n ) ( p = <. <. a , b >. , <. c , d >. >. /\ q = <. <. e , f >. , <. g , h >. >. /\ ( ( b Btwn <. a , c >. /\ f Btwn <. e , g >. ) /\ ( <. a , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) /\ ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) } |
| 71 |
10 21 28 34 44 55 62 68 69 70
|
br8 |
|- ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) |