| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opeq1 |  |-  ( a = A -> <. a , c >. = <. A , c >. ) | 
						
							| 2 | 1 | breq2d |  |-  ( a = A -> ( b Btwn <. a , c >. <-> b Btwn <. A , c >. ) ) | 
						
							| 3 | 2 | anbi1d |  |-  ( a = A -> ( ( b Btwn <. a , c >. /\ f Btwn <. e , g >. ) <-> ( b Btwn <. A , c >. /\ f Btwn <. e , g >. ) ) ) | 
						
							| 4 |  | opeq1 |  |-  ( a = A -> <. a , b >. = <. A , b >. ) | 
						
							| 5 | 4 | breq1d |  |-  ( a = A -> ( <. a , b >. Cgr <. e , f >. <-> <. A , b >. Cgr <. e , f >. ) ) | 
						
							| 6 | 5 | anbi1d |  |-  ( a = A -> ( ( <. a , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) <-> ( <. A , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) ) ) | 
						
							| 7 |  | opeq1 |  |-  ( a = A -> <. a , d >. = <. A , d >. ) | 
						
							| 8 | 7 | breq1d |  |-  ( a = A -> ( <. a , d >. Cgr <. e , h >. <-> <. A , d >. Cgr <. e , h >. ) ) | 
						
							| 9 | 8 | anbi1d |  |-  ( a = A -> ( ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) <-> ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) | 
						
							| 10 | 3 6 9 | 3anbi123d |  |-  ( a = A -> ( ( ( b Btwn <. a , c >. /\ f Btwn <. e , g >. ) /\ ( <. a , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) /\ ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) <-> ( ( b Btwn <. A , c >. /\ f Btwn <. e , g >. ) /\ ( <. A , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) ) | 
						
							| 11 |  | breq1 |  |-  ( b = B -> ( b Btwn <. A , c >. <-> B Btwn <. A , c >. ) ) | 
						
							| 12 | 11 | anbi1d |  |-  ( b = B -> ( ( b Btwn <. A , c >. /\ f Btwn <. e , g >. ) <-> ( B Btwn <. A , c >. /\ f Btwn <. e , g >. ) ) ) | 
						
							| 13 |  | opeq2 |  |-  ( b = B -> <. A , b >. = <. A , B >. ) | 
						
							| 14 | 13 | breq1d |  |-  ( b = B -> ( <. A , b >. Cgr <. e , f >. <-> <. A , B >. Cgr <. e , f >. ) ) | 
						
							| 15 |  | opeq1 |  |-  ( b = B -> <. b , c >. = <. B , c >. ) | 
						
							| 16 | 15 | breq1d |  |-  ( b = B -> ( <. b , c >. Cgr <. f , g >. <-> <. B , c >. Cgr <. f , g >. ) ) | 
						
							| 17 | 14 16 | anbi12d |  |-  ( b = B -> ( ( <. A , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) <-> ( <. A , B >. Cgr <. e , f >. /\ <. B , c >. Cgr <. f , g >. ) ) ) | 
						
							| 18 |  | opeq1 |  |-  ( b = B -> <. b , d >. = <. B , d >. ) | 
						
							| 19 | 18 | breq1d |  |-  ( b = B -> ( <. b , d >. Cgr <. f , h >. <-> <. B , d >. Cgr <. f , h >. ) ) | 
						
							| 20 | 19 | anbi2d |  |-  ( b = B -> ( ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) <-> ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) | 
						
							| 21 | 12 17 20 | 3anbi123d |  |-  ( b = B -> ( ( ( b Btwn <. A , c >. /\ f Btwn <. e , g >. ) /\ ( <. A , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , c >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , c >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) ) | 
						
							| 22 |  | opeq2 |  |-  ( c = C -> <. A , c >. = <. A , C >. ) | 
						
							| 23 | 22 | breq2d |  |-  ( c = C -> ( B Btwn <. A , c >. <-> B Btwn <. A , C >. ) ) | 
						
							| 24 | 23 | anbi1d |  |-  ( c = C -> ( ( B Btwn <. A , c >. /\ f Btwn <. e , g >. ) <-> ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) ) ) | 
						
							| 25 |  | opeq2 |  |-  ( c = C -> <. B , c >. = <. B , C >. ) | 
						
							| 26 | 25 | breq1d |  |-  ( c = C -> ( <. B , c >. Cgr <. f , g >. <-> <. B , C >. Cgr <. f , g >. ) ) | 
						
							| 27 | 26 | anbi2d |  |-  ( c = C -> ( ( <. A , B >. Cgr <. e , f >. /\ <. B , c >. Cgr <. f , g >. ) <-> ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) ) ) | 
						
							| 28 | 24 27 | 3anbi12d |  |-  ( c = C -> ( ( ( B Btwn <. A , c >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , c >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) ) ) | 
						
							| 29 |  | opeq2 |  |-  ( d = D -> <. A , d >. = <. A , D >. ) | 
						
							| 30 | 29 | breq1d |  |-  ( d = D -> ( <. A , d >. Cgr <. e , h >. <-> <. A , D >. Cgr <. e , h >. ) ) | 
						
							| 31 |  | opeq2 |  |-  ( d = D -> <. B , d >. = <. B , D >. ) | 
						
							| 32 | 31 | breq1d |  |-  ( d = D -> ( <. B , d >. Cgr <. f , h >. <-> <. B , D >. Cgr <. f , h >. ) ) | 
						
							| 33 | 30 32 | anbi12d |  |-  ( d = D -> ( ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) | 
						
							| 34 | 33 | 3anbi3d |  |-  ( d = D -> ( ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , d >. Cgr <. e , h >. /\ <. B , d >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) ) | 
						
							| 35 |  | opeq1 |  |-  ( e = E -> <. e , g >. = <. E , g >. ) | 
						
							| 36 | 35 | breq2d |  |-  ( e = E -> ( f Btwn <. e , g >. <-> f Btwn <. E , g >. ) ) | 
						
							| 37 | 36 | anbi2d |  |-  ( e = E -> ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) <-> ( B Btwn <. A , C >. /\ f Btwn <. E , g >. ) ) ) | 
						
							| 38 |  | opeq1 |  |-  ( e = E -> <. e , f >. = <. E , f >. ) | 
						
							| 39 | 38 | breq2d |  |-  ( e = E -> ( <. A , B >. Cgr <. e , f >. <-> <. A , B >. Cgr <. E , f >. ) ) | 
						
							| 40 | 39 | anbi1d |  |-  ( e = E -> ( ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) <-> ( <. A , B >. Cgr <. E , f >. /\ <. B , C >. Cgr <. f , g >. ) ) ) | 
						
							| 41 |  | opeq1 |  |-  ( e = E -> <. e , h >. = <. E , h >. ) | 
						
							| 42 | 41 | breq2d |  |-  ( e = E -> ( <. A , D >. Cgr <. e , h >. <-> <. A , D >. Cgr <. E , h >. ) ) | 
						
							| 43 | 42 | anbi1d |  |-  ( e = E -> ( ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) | 
						
							| 44 | 37 40 43 | 3anbi123d |  |-  ( e = E -> ( ( ( B Btwn <. A , C >. /\ f Btwn <. e , g >. ) /\ ( <. A , B >. Cgr <. e , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , D >. Cgr <. e , h >. /\ <. B , D >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ f Btwn <. E , g >. ) /\ ( <. A , B >. Cgr <. E , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) ) ) | 
						
							| 45 |  | breq1 |  |-  ( f = F -> ( f Btwn <. E , g >. <-> F Btwn <. E , g >. ) ) | 
						
							| 46 | 45 | anbi2d |  |-  ( f = F -> ( ( B Btwn <. A , C >. /\ f Btwn <. E , g >. ) <-> ( B Btwn <. A , C >. /\ F Btwn <. E , g >. ) ) ) | 
						
							| 47 |  | opeq2 |  |-  ( f = F -> <. E , f >. = <. E , F >. ) | 
						
							| 48 | 47 | breq2d |  |-  ( f = F -> ( <. A , B >. Cgr <. E , f >. <-> <. A , B >. Cgr <. E , F >. ) ) | 
						
							| 49 |  | opeq1 |  |-  ( f = F -> <. f , g >. = <. F , g >. ) | 
						
							| 50 | 49 | breq2d |  |-  ( f = F -> ( <. B , C >. Cgr <. f , g >. <-> <. B , C >. Cgr <. F , g >. ) ) | 
						
							| 51 | 48 50 | anbi12d |  |-  ( f = F -> ( ( <. A , B >. Cgr <. E , f >. /\ <. B , C >. Cgr <. f , g >. ) <-> ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , g >. ) ) ) | 
						
							| 52 |  | opeq1 |  |-  ( f = F -> <. f , h >. = <. F , h >. ) | 
						
							| 53 | 52 | breq2d |  |-  ( f = F -> ( <. B , D >. Cgr <. f , h >. <-> <. B , D >. Cgr <. F , h >. ) ) | 
						
							| 54 | 53 | anbi2d |  |-  ( f = F -> ( ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) <-> ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) | 
						
							| 55 | 46 51 54 | 3anbi123d |  |-  ( f = F -> ( ( ( B Btwn <. A , C >. /\ f Btwn <. E , g >. ) /\ ( <. A , B >. Cgr <. E , f >. /\ <. B , C >. Cgr <. f , g >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. f , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , g >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , g >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) ) | 
						
							| 56 |  | opeq2 |  |-  ( g = G -> <. E , g >. = <. E , G >. ) | 
						
							| 57 | 56 | breq2d |  |-  ( g = G -> ( F Btwn <. E , g >. <-> F Btwn <. E , G >. ) ) | 
						
							| 58 | 57 | anbi2d |  |-  ( g = G -> ( ( B Btwn <. A , C >. /\ F Btwn <. E , g >. ) <-> ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) ) ) | 
						
							| 59 |  | opeq2 |  |-  ( g = G -> <. F , g >. = <. F , G >. ) | 
						
							| 60 | 59 | breq2d |  |-  ( g = G -> ( <. B , C >. Cgr <. F , g >. <-> <. B , C >. Cgr <. F , G >. ) ) | 
						
							| 61 | 60 | anbi2d |  |-  ( g = G -> ( ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , g >. ) <-> ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) ) ) | 
						
							| 62 | 58 61 | 3anbi12d |  |-  ( g = G -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , g >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , g >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) ) ) | 
						
							| 63 |  | opeq2 |  |-  ( h = H -> <. E , h >. = <. E , H >. ) | 
						
							| 64 | 63 | breq2d |  |-  ( h = H -> ( <. A , D >. Cgr <. E , h >. <-> <. A , D >. Cgr <. E , H >. ) ) | 
						
							| 65 |  | opeq2 |  |-  ( h = H -> <. F , h >. = <. F , H >. ) | 
						
							| 66 | 65 | breq2d |  |-  ( h = H -> ( <. B , D >. Cgr <. F , h >. <-> <. B , D >. Cgr <. F , H >. ) ) | 
						
							| 67 | 64 66 | anbi12d |  |-  ( h = H -> ( ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) <-> ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) | 
						
							| 68 | 67 | 3anbi3d |  |-  ( h = H -> ( ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , h >. /\ <. B , D >. Cgr <. F , h >. ) ) <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) | 
						
							| 69 |  | fveq2 |  |-  ( n = N -> ( EE ` n ) = ( EE ` N ) ) | 
						
							| 70 |  | df-ofs |  |-  OuterFiveSeg = { <. p , q >. | E. n e. NN E. a e. ( EE ` n ) E. b e. ( EE ` n ) E. c e. ( EE ` n ) E. d e. ( EE ` n ) E. e e. ( EE ` n ) E. f e. ( EE ` n ) E. g e. ( EE ` n ) E. h e. ( EE ` n ) ( p = <. <. a , b >. , <. c , d >. >. /\ q = <. <. e , f >. , <. g , h >. >. /\ ( ( b Btwn <. a , c >. /\ f Btwn <. e , g >. ) /\ ( <. a , b >. Cgr <. e , f >. /\ <. b , c >. Cgr <. f , g >. ) /\ ( <. a , d >. Cgr <. e , h >. /\ <. b , d >. Cgr <. f , h >. ) ) ) } | 
						
							| 71 | 10 21 28 34 44 55 62 68 69 70 | br8 |  |-  ( ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) /\ E e. ( EE ` N ) ) /\ ( F e. ( EE ` N ) /\ G e. ( EE ` N ) /\ H e. ( EE ` N ) ) ) -> ( <. <. A , B >. , <. C , D >. >. OuterFiveSeg <. <. E , F >. , <. G , H >. >. <-> ( ( B Btwn <. A , C >. /\ F Btwn <. E , G >. ) /\ ( <. A , B >. Cgr <. E , F >. /\ <. B , C >. Cgr <. F , G >. ) /\ ( <. A , D >. Cgr <. E , H >. /\ <. B , D >. Cgr <. F , H >. ) ) ) ) |