Step |
Hyp |
Ref |
Expression |
1 |
|
opeq1 |
⊢ ( 𝑎 = 𝐴 → ⟨ 𝑎 , 𝑐 ⟩ = ⟨ 𝐴 , 𝑐 ⟩ ) |
2 |
1
|
breq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑏 Btwn ⟨ 𝑎 , 𝑐 ⟩ ↔ 𝑏 Btwn ⟨ 𝐴 , 𝑐 ⟩ ) ) |
3 |
2
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑏 Btwn ⟨ 𝑎 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ↔ ( 𝑏 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ) ) |
4 |
|
opeq1 |
⊢ ( 𝑎 = 𝐴 → ⟨ 𝑎 , 𝑏 ⟩ = ⟨ 𝐴 , 𝑏 ⟩ ) |
5 |
4
|
breq1d |
⊢ ( 𝑎 = 𝐴 → ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ↔ ⟨ 𝐴 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) ) |
6 |
5
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ↔ ( ⟨ 𝐴 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ) ) |
7 |
|
opeq1 |
⊢ ( 𝑎 = 𝐴 → ⟨ 𝑎 , 𝑑 ⟩ = ⟨ 𝐴 , 𝑑 ⟩ ) |
8 |
7
|
breq1d |
⊢ ( 𝑎 = 𝐴 → ( ⟨ 𝑎 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ↔ ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ) ) |
9 |
8
|
anbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( ⟨ 𝑎 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝑏 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ↔ ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝑏 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) |
10 |
3 6 9
|
3anbi123d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑏 Btwn ⟨ 𝑎 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝑎 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝑏 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ↔ ( ( 𝑏 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝑏 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) ) |
11 |
|
breq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 Btwn ⟨ 𝐴 , 𝑐 ⟩ ↔ 𝐵 Btwn ⟨ 𝐴 , 𝑐 ⟩ ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑏 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ) ) |
13 |
|
opeq2 |
⊢ ( 𝑏 = 𝐵 → ⟨ 𝐴 , 𝑏 ⟩ = ⟨ 𝐴 , 𝐵 ⟩ ) |
14 |
13
|
breq1d |
⊢ ( 𝑏 = 𝐵 → ( ⟨ 𝐴 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ) ) |
15 |
|
opeq1 |
⊢ ( 𝑏 = 𝐵 → ⟨ 𝑏 , 𝑐 ⟩ = ⟨ 𝐵 , 𝑐 ⟩ ) |
16 |
15
|
breq1d |
⊢ ( 𝑏 = 𝐵 → ( ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ↔ ⟨ 𝐵 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ) |
17 |
14 16
|
anbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ⟨ 𝐴 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ) ) |
18 |
|
opeq1 |
⊢ ( 𝑏 = 𝐵 → ⟨ 𝑏 , 𝑑 ⟩ = ⟨ 𝐵 , 𝑑 ⟩ ) |
19 |
18
|
breq1d |
⊢ ( 𝑏 = 𝐵 → ( ⟨ 𝑏 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ↔ ⟨ 𝐵 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝑏 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ↔ ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) |
21 |
12 17 20
|
3anbi123d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝑏 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝑏 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) ) |
22 |
|
opeq2 |
⊢ ( 𝑐 = 𝐶 → ⟨ 𝐴 , 𝑐 ⟩ = ⟨ 𝐴 , 𝐶 ⟩ ) |
23 |
22
|
breq2d |
⊢ ( 𝑐 = 𝐶 → ( 𝐵 Btwn ⟨ 𝐴 , 𝑐 ⟩ ↔ 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ) ) |
24 |
23
|
anbi1d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ) ) |
25 |
|
opeq2 |
⊢ ( 𝑐 = 𝐶 → ⟨ 𝐵 , 𝑐 ⟩ = ⟨ 𝐵 , 𝐶 ⟩ ) |
26 |
25
|
breq1d |
⊢ ( 𝑐 = 𝐶 → ( ⟨ 𝐵 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ↔ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ) |
27 |
26
|
anbi2d |
⊢ ( 𝑐 = 𝐶 → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ) ) |
28 |
24 27
|
3anbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) ) |
29 |
|
opeq2 |
⊢ ( 𝑑 = 𝐷 → ⟨ 𝐴 , 𝑑 ⟩ = ⟨ 𝐴 , 𝐷 ⟩ ) |
30 |
29
|
breq1d |
⊢ ( 𝑑 = 𝐷 → ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ↔ ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ) ) |
31 |
|
opeq2 |
⊢ ( 𝑑 = 𝐷 → ⟨ 𝐵 , 𝑑 ⟩ = ⟨ 𝐵 , 𝐷 ⟩ ) |
32 |
31
|
breq1d |
⊢ ( 𝑑 = 𝐷 → ( ⟨ 𝐵 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ↔ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) |
33 |
30 32
|
anbi12d |
⊢ ( 𝑑 = 𝐷 → ( ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ↔ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) |
34 |
33
|
3anbi3d |
⊢ ( 𝑑 = 𝐷 → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) ) |
35 |
|
opeq1 |
⊢ ( 𝑒 = 𝐸 → ⟨ 𝑒 , 𝑔 ⟩ = ⟨ 𝐸 , 𝑔 ⟩ ) |
36 |
35
|
breq2d |
⊢ ( 𝑒 = 𝐸 → ( 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ↔ 𝑓 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ) |
37 |
36
|
anbi2d |
⊢ ( 𝑒 = 𝐸 → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ) ) |
38 |
|
opeq1 |
⊢ ( 𝑒 = 𝐸 → ⟨ 𝑒 , 𝑓 ⟩ = ⟨ 𝐸 , 𝑓 ⟩ ) |
39 |
38
|
breq2d |
⊢ ( 𝑒 = 𝐸 → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝑓 ⟩ ) ) |
40 |
39
|
anbi1d |
⊢ ( 𝑒 = 𝐸 → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ) ) |
41 |
|
opeq1 |
⊢ ( 𝑒 = 𝐸 → ⟨ 𝑒 , ℎ ⟩ = ⟨ 𝐸 , ℎ ⟩ ) |
42 |
41
|
breq2d |
⊢ ( 𝑒 = 𝐸 → ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ↔ ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ) ) |
43 |
42
|
anbi1d |
⊢ ( 𝑒 = 𝐸 → ( ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ↔ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) |
44 |
37 40 43
|
3anbi123d |
⊢ ( 𝑒 = 𝐸 → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) ) |
45 |
|
breq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 Btwn ⟨ 𝐸 , 𝑔 ⟩ ↔ 𝐹 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ) |
46 |
45
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ) ) |
47 |
|
opeq2 |
⊢ ( 𝑓 = 𝐹 → ⟨ 𝐸 , 𝑓 ⟩ = ⟨ 𝐸 , 𝐹 ⟩ ) |
48 |
47
|
breq2d |
⊢ ( 𝑓 = 𝐹 → ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝑓 ⟩ ↔ ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) ) |
49 |
|
opeq1 |
⊢ ( 𝑓 = 𝐹 → ⟨ 𝑓 , 𝑔 ⟩ = ⟨ 𝐹 , 𝑔 ⟩ ) |
50 |
49
|
breq2d |
⊢ ( 𝑓 = 𝐹 → ( ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ↔ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝑔 ⟩ ) ) |
51 |
48 50
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝑔 ⟩ ) ) ) |
52 |
|
opeq1 |
⊢ ( 𝑓 = 𝐹 → ⟨ 𝑓 , ℎ ⟩ = ⟨ 𝐹 , ℎ ⟩ ) |
53 |
52
|
breq2d |
⊢ ( 𝑓 = 𝐹 → ( ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ↔ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , ℎ ⟩ ) ) |
54 |
53
|
anbi2d |
⊢ ( 𝑓 = 𝐹 → ( ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ↔ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , ℎ ⟩ ) ) ) |
55 |
46 51 54
|
3anbi123d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝑓 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝑓 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , ℎ ⟩ ) ) ) ) |
56 |
|
opeq2 |
⊢ ( 𝑔 = 𝐺 → ⟨ 𝐸 , 𝑔 ⟩ = ⟨ 𝐸 , 𝐺 ⟩ ) |
57 |
56
|
breq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝐹 Btwn ⟨ 𝐸 , 𝑔 ⟩ ↔ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ) |
58 |
57
|
anbi2d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ↔ ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ) ) |
59 |
|
opeq2 |
⊢ ( 𝑔 = 𝐺 → ⟨ 𝐹 , 𝑔 ⟩ = ⟨ 𝐹 , 𝐺 ⟩ ) |
60 |
59
|
breq2d |
⊢ ( 𝑔 = 𝐺 → ( ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝑔 ⟩ ↔ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ) |
61 |
60
|
anbi2d |
⊢ ( 𝑔 = 𝐺 → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝑔 ⟩ ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ) ) |
62 |
58 61
|
3anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝑔 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , ℎ ⟩ ) ) ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , ℎ ⟩ ) ) ) ) |
63 |
|
opeq2 |
⊢ ( ℎ = 𝐻 → ⟨ 𝐸 , ℎ ⟩ = ⟨ 𝐸 , 𝐻 ⟩ ) |
64 |
63
|
breq2d |
⊢ ( ℎ = 𝐻 → ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ↔ ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ) ) |
65 |
|
opeq2 |
⊢ ( ℎ = 𝐻 → ⟨ 𝐹 , ℎ ⟩ = ⟨ 𝐹 , 𝐻 ⟩ ) |
66 |
65
|
breq2d |
⊢ ( ℎ = 𝐻 → ( ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , ℎ ⟩ ↔ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ) ) |
67 |
64 66
|
anbi12d |
⊢ ( ℎ = 𝐻 → ( ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , ℎ ⟩ ) ↔ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ) ) ) |
68 |
67
|
3anbi3d |
⊢ ( ℎ = 𝐻 → ( ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , ℎ ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , ℎ ⟩ ) ) ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ) ) ) ) |
69 |
|
fveq2 |
⊢ ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) ) |
70 |
|
df-ofs |
⊢ OuterFiveSeg = { ⟨ 𝑝 , 𝑞 ⟩ ∣ ∃ 𝑛 ∈ ℕ ∃ 𝑎 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑏 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑐 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑑 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑒 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑓 ∈ ( 𝔼 ‘ 𝑛 ) ∃ 𝑔 ∈ ( 𝔼 ‘ 𝑛 ) ∃ ℎ ∈ ( 𝔼 ‘ 𝑛 ) ( 𝑝 = ⟨ ⟨ 𝑎 , 𝑏 ⟩ , ⟨ 𝑐 , 𝑑 ⟩ ⟩ ∧ 𝑞 = ⟨ ⟨ 𝑒 , 𝑓 ⟩ , ⟨ 𝑔 , ℎ ⟩ ⟩ ∧ ( ( 𝑏 Btwn ⟨ 𝑎 , 𝑐 ⟩ ∧ 𝑓 Btwn ⟨ 𝑒 , 𝑔 ⟩ ) ∧ ( ⟨ 𝑎 , 𝑏 ⟩ Cgr ⟨ 𝑒 , 𝑓 ⟩ ∧ ⟨ 𝑏 , 𝑐 ⟩ Cgr ⟨ 𝑓 , 𝑔 ⟩ ) ∧ ( ⟨ 𝑎 , 𝑑 ⟩ Cgr ⟨ 𝑒 , ℎ ⟩ ∧ ⟨ 𝑏 , 𝑑 ⟩ Cgr ⟨ 𝑓 , ℎ ⟩ ) ) ) } |
71 |
10 21 28 34 44 55 62 68 69 70
|
br8 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ⟨ ⟨ 𝐴 , 𝐵 ⟩ , ⟨ 𝐶 , 𝐷 ⟩ ⟩ OuterFiveSeg ⟨ ⟨ 𝐸 , 𝐹 ⟩ , ⟨ 𝐺 , 𝐻 ⟩ ⟩ ↔ ( ( 𝐵 Btwn ⟨ 𝐴 , 𝐶 ⟩ ∧ 𝐹 Btwn ⟨ 𝐸 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ∧ ⟨ 𝐵 , 𝐶 ⟩ Cgr ⟨ 𝐹 , 𝐺 ⟩ ) ∧ ( ⟨ 𝐴 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐻 ⟩ ∧ ⟨ 𝐵 , 𝐷 ⟩ Cgr ⟨ 𝐹 , 𝐻 ⟩ ) ) ) ) |