Step |
Hyp |
Ref |
Expression |
1 |
|
brofs |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 〈 𝐴 , 𝐵 〉 , 〈 𝐶 , 𝐷 〉 〉 OuterFiveSeg 〈 〈 𝐸 , 𝐹 〉 , 〈 𝐺 , 𝐻 〉 〉 ↔ ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) ) |
2 |
1
|
anbi1d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 〈 𝐴 , 𝐵 〉 , 〈 𝐶 , 𝐷 〉 〉 OuterFiveSeg 〈 〈 𝐸 , 𝐹 〉 , 〈 𝐺 , 𝐻 〉 〉 ∧ 𝐴 ≠ 𝐵 ) ↔ ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ∧ 𝐴 ≠ 𝐵 ) ) ) |
3 |
|
simpr |
⊢ ( ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
4 |
|
simpl1l |
⊢ ( ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ∧ 𝐴 ≠ 𝐵 ) → 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ) |
5 |
|
simpl1r |
⊢ ( ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ∧ 𝐴 ≠ 𝐵 ) → 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) |
6 |
3 4 5
|
3jca |
⊢ ( ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ) |
7 |
|
simpl2 |
⊢ ( ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ∧ 𝐴 ≠ 𝐵 ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ) |
8 |
|
simpl3 |
⊢ ( ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ∧ 𝐴 ≠ 𝐵 ) → ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) |
9 |
6 7 8
|
3jca |
⊢ ( ( ( ( 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) |
10 |
2 9
|
syl6bi |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 〈 𝐴 , 𝐵 〉 , 〈 𝐶 , 𝐷 〉 〉 OuterFiveSeg 〈 〈 𝐸 , 𝐹 〉 , 〈 𝐺 , 𝐻 〉 〉 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) ) ) |
11 |
|
ax5seg |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈 𝐴 , 𝐶 〉 ∧ 𝐹 Btwn 〈 𝐸 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐸 , 𝐹 〉 ∧ 〈 𝐵 , 𝐶 〉 Cgr 〈 𝐹 , 𝐺 〉 ) ∧ ( 〈 𝐴 , 𝐷 〉 Cgr 〈 𝐸 , 𝐻 〉 ∧ 〈 𝐵 , 𝐷 〉 Cgr 〈 𝐹 , 𝐻 〉 ) ) → 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) |
12 |
10 11
|
syld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐺 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐻 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 〈 〈 𝐴 , 𝐵 〉 , 〈 𝐶 , 𝐷 〉 〉 OuterFiveSeg 〈 〈 𝐸 , 𝐹 〉 , 〈 𝐺 , 𝐻 〉 〉 ∧ 𝐴 ≠ 𝐵 ) → 〈 𝐶 , 𝐷 〉 Cgr 〈 𝐺 , 𝐻 〉 ) ) |